(2003•淮安)已知:如圖,點D在△ABC的邊BC上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:△AED≌△DFA;
(2)若AD平分∠BAC.求證:四邊形AEDF是菱形.

【答案】分析:1、因為DE∥AC,DF∥AB,所以四邊形AEDF為平行四邊形,所以△AED≌△DFA.
2、要證四邊形AEDF是菱形,只需通過定義證明四邊形為平行四邊形,再根據(jù)等角對等邊得到一對鄰邊相等,可證四邊形AEDF是菱形.
解答:證明:(1)∵DE∥AC,DF∥AB,
∴四邊形AEDF為平行四邊形.
∴AE=DF,AF=DE.
又AD=AD,
∴△AED≌△DFA.

(2)∵AD平分∠BAC,
∴∠EAD=∠FAD.
又∵AEDF為平行四邊形,
∴∠FAD=∠ADE,
∴AE=ED,
∴四邊形AEDF是菱形.
點評:此題考查了兩個知識點:全等三角形的判定和菱形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2003•淮安)已知二次函數(shù)y=ax2-4x+3的圖象經(jīng)過點(-1,8).
(1)求此二次函數(shù)的解析式;
(2)根據(jù)(1)填寫下表.在直角坐標(biāo)系中描點,并畫出函數(shù)的圖象;
x1234
y
(3)根據(jù)圖象回答:當(dāng)函數(shù)值y<0時,x的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•淮安)已知二次函數(shù)y=ax2-4x+3的圖象經(jīng)過點(-1,8).
(1)求此二次函數(shù)的解析式;
(2)根據(jù)(1)填寫下表.在直角坐標(biāo)系中描點,并畫出函數(shù)的圖象;
x1234
y
(3)根據(jù)圖象回答:當(dāng)函數(shù)值y<0時,x的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2003•淮安)已知:⊙O1與⊙O2相交于點A、B,AC切⊙O2于點A,交⊙O1于點C.直線EF過點B,交⊙O1于點E,交⊙O2于點F.
(1)設(shè)直線EF交線段AC于點D(如圖1).
①若ED=12,DB=25,BF=11,求DA和DC的長;
②求證:AD•DE=CD•DF;
(2)當(dāng)直線EF繞點B旋轉(zhuǎn)交線段AC的延長線于點D時(如圖2),試問AD•DE=CD•DF是否仍然成立?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•淮安)已知:⊙O1與⊙O2相交于點A、B,AC切⊙O2于點A,交⊙O1于點C.直線EF過點B,交⊙O1于點E,交⊙O2于點F.
(1)設(shè)直線EF交線段AC于點D(如圖1).
①若ED=12,DB=25,BF=11,求DA和DC的長;
②求證:AD•DE=CD•DF;
(2)當(dāng)直線EF繞點B旋轉(zhuǎn)交線段AC的延長線于點D時(如圖2),試問AD•DE=CD•DF是否仍然成立?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案