,求x,y.
【答案】分析:先根據(jù)已知條件得出,再解方程組即可得出答案.
解答:解:∵
,
由②得:y=2-2x  ③,
把③代入①得:
;
點(diǎn)評:此題考查了高次方程,關(guān)鍵是根據(jù)已知條件列出方程組,用到的知識(shí)點(diǎn)是代入法解方程組、絕對值、偶次方的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=mx2+3mx-3(m>0)與y軸交于點(diǎn)C,與x軸交于A、B兩精英家教網(wǎng)點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),且tan∠OCB=
13

(1)求此拋物線的解析式;
(2)如果點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),設(shè)D點(diǎn)的橫坐標(biāo)為x,△ACD的面積為S,求S與x的關(guān)系式,并求當(dāng)S最大時(shí)點(diǎn)D的坐標(biāo);
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上,是否存在以A、C、E、P為頂點(diǎn)的平行四邊形?若存在求點(diǎn)P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、已知關(guān)于x的一元二次方程x2+kx-1=0,是否存在實(shí)數(shù)k,使得方程有兩根分別為x1,x2且滿足x1+x2=x1•x2,若有求出k的值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南一模)如圖,已知矩形ABCD中,AB=8cm,BC=6cm,如果點(diǎn)P由C出發(fā)沿CA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AB方向向點(diǎn)B勻速運(yùn)動(dòng),它們的速度均為2cm/s,連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t.(單位:s).(0≤t≤4)解答下列問題:
(1)求AC的長;
(2)當(dāng)t為何值時(shí),PQ∥BC;
(3)設(shè)△AQP的面積為S(單位:cm2),當(dāng)t為何值時(shí),s=
365
cm2;
(4)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時(shí)t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,AD、BC垂直于AB,AD=13,BC=16,DC=5,點(diǎn)P是動(dòng)點(diǎn),點(diǎn)P以1cm/s的速度由A向D運(yùn)動(dòng),同時(shí)Q從C向B以2cm/s的速度運(yùn)動(dòng),當(dāng)一點(diǎn)到達(dá)時(shí)時(shí),另一點(diǎn)同時(shí)停止運(yùn)動(dòng).
(1)當(dāng)P從A向Q運(yùn)動(dòng)t秒時(shí),四邊形PQCD的面積S與t的關(guān)系式.
(2)是否存在時(shí)間t,使得梯形PQCD是等腰梯形?若存在求出時(shí)間t,不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,正方形ABCD的邊長為6,菱形EFGH的三個(gè)頂點(diǎn)E,G,H分別在正方形ABCD邊AB,CD,DA上,AH=2,連接CF.過點(diǎn)F作FM垂直于DC,交直線DC于M.
(1)如果DG=2,那么FM=
2
2
 (畫出對應(yīng)圖形會(huì)變得更簡單!)
(2)當(dāng)E,G在正方形邊上移動(dòng)時(shí),猜測FM的值是否發(fā)生改變,并證明你的結(jié)論.
(3)設(shè)DG=x,用含x的代數(shù)式表示△FCG的面積S;判斷S能否等于1,若能求x的值,若不能請說明理由.
(溫馨提示:不要忘記頂點(diǎn)E,G,H分別在正方形ABCD邊AB,CD,DA上哦。

查看答案和解析>>

同步練習(xí)冊答案