【題目】如圖12,在△ABC中,∠C=90°,AB=10cm,BC=6cm. 點(diǎn)P從點(diǎn)A出發(fā),沿AB邊以2 cm/s的速度向點(diǎn)B勻速移動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),沿BC邊以1 cm/s的速度向點(diǎn)C勻速移動(dòng). 當(dāng)一個(gè)運(yùn)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)運(yùn)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s).

1當(dāng)PQ∥AC時(shí),求t的值;

2)當(dāng)t為何值時(shí),QB=QP

3當(dāng)t為何值時(shí),△PBQ的面積等于4.8cm 2.

【答案】1t=2t=(3)當(dāng)t為2s或3s時(shí),△PBQ的面積等于4.8cm 2

【解析】試題分析 ,對(duì)應(yīng)邊成比例,即可求出的值.

當(dāng)時(shí),過(guò)點(diǎn),可以推出對(duì)應(yīng)邊成比例,則,即可求出的值.

過(guò)點(diǎn),則可以用表示出,根據(jù)三角形的面積公式,列出方程,解方程即可.

試題解析:

1,

,

解得 t=.

2)解法1

當(dāng)時(shí),過(guò)點(diǎn)(如圖4),則

解得 t=.

解法2

當(dāng)時(shí),過(guò)點(diǎn)(如圖4),則

中,cosB=,

中,

cosB=,即, 解得t=.

3)在中, .

過(guò)點(diǎn),則(如圖4.2.

.

,即 , 解得

整理得: 解這個(gè)方程,得

當(dāng)2s3s時(shí), 的面積等于4.8cm 2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,請(qǐng)回答下列問(wèn)題.

材料一:我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書(shū)九章》中記述了“三斜求積術(shù)”,即已知三角形的三邊長(zhǎng),求它的面積,用現(xiàn)代式子表示即為:①(其中為三角形的三邊長(zhǎng),為面積),而另一個(gè)文明古國(guó)古希臘也有求三角形面積的“海倫公式”;……②(其中

材料二:對(duì)于平方差公式:公式逆用可得:,例:

1)若已知三角形的三邊長(zhǎng)分別為4,57,請(qǐng)分別運(yùn)用公式①和公式②,計(jì)算該三角形的面積;

2)你能否由公式①推導(dǎo)出公式②?請(qǐng)?jiān)囋嚕瑢?xiě)出推導(dǎo)過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線上部分點(diǎn)坐標(biāo)如表所示,下列說(shuō)法錯(cuò)誤的是( )

x

3

2

1

0

1

y

6

0

4

6

6

A. 拋物線與y軸的交點(diǎn)為(0,6) B. 拋物線的對(duì)稱軸是在y軸的右側(cè)

C. 拋物線一定經(jīng)過(guò)點(diǎn)(3,0) D. 在對(duì)稱軸左側(cè),yx增大而減小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:

在一個(gè)三角形中,如果一個(gè)角的度數(shù)是另一個(gè)角的度數(shù)倍,那么這樣的三角形我們稱之為和諧三角形”.如:三個(gè)內(nèi)角分別為,,的三角形是和諧三角形

概念理解:

如圖,,在射線上找一點(diǎn),過(guò)點(diǎn)于點(diǎn),以為端點(diǎn)作射線,交線段于點(diǎn)(點(diǎn)不與重合)

1的度數(shù)為 , (填不是和諧三角形

2)若,求證:和諧三角形”.

應(yīng)用拓展:

如圖,點(diǎn)的邊上,連接,作的平分線交于點(diǎn),在上取點(diǎn),使.和諧三角形,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C, D為OC的中點(diǎn),直線AD交拋物線于點(diǎn)E(2,6),且ABE與ABC的面積之比為32.

(1)求這條拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)連結(jié)BD,試判斷BD與AD的位置關(guān)系,并說(shuō)明理由;

(3)連結(jié)BC交直線AD于點(diǎn)M,在直線AD上,是否存在這樣的點(diǎn)N(不與點(diǎn)M重合),使得以A、B、N為頂點(diǎn)的三角形與ABM相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為美化校園,準(zhǔn)備在長(zhǎng)35米,寬20米的長(zhǎng)方形場(chǎng)地上,修建若干條寬度相同的道路,余下部分作草坪,并請(qǐng)全校學(xué)生參與方案設(shè)計(jì),現(xiàn)有3位同學(xué)各設(shè)計(jì)了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請(qǐng)你根據(jù)這一問(wèn)題,在每種方案中都只列出方程不解.

①甲方案設(shè)計(jì)圖紙為圖l,設(shè)計(jì)草坪的總面積為600平方米.

②乙方案設(shè)計(jì)圖紙為圖2,設(shè)計(jì)草坪的總面積為600平方米.

③丙方案設(shè)計(jì)圖紙為圖3,設(shè)計(jì)草坪的總面積為540平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)單位面積為1的方格紙上,A1A2A3A3A4A5,A5A6A7……是斜邊在x軸上,且斜邊長(zhǎng)分別為24,6,……的等腰直角三角形.若A1A2A3的頂點(diǎn)坐標(biāo)分別為A12,0),A21,-1),A30,0),則依圖中所示規(guī)律,點(diǎn)A2019的橫坐標(biāo)為( 。

A. 1010B. C. 1008D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,1=2,DEBC,ABBC,試說(shuō)明:∠A=3.

解:因?yàn)?/span>DEBC,ABBC(已知),

所以∠DEC=ABC=90°(____________),

所以DEAB(____________________),

所以∠2=________(____________________),

1=________(____________________).

因?yàn)椤?/span>1=2(已知),

所以∠A=3(等量代換).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中有四邊形ABCD.

1)寫(xiě)出四邊形ABCD的頂點(diǎn)坐標(biāo);

2)求線段AB的長(zhǎng);

3)求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案