“百誠”公司投資750萬元,成功研制出一種市場(chǎng)需求量較大的產(chǎn)品,并再投入資金1750萬元進(jìn)行相關(guān)生產(chǎn)設(shè)備的購買.已知生產(chǎn)過程中,每件產(chǎn)品的成本為60元.在銷售過程中發(fā)現(xiàn),當(dāng)銷售單價(jià)定為120元時(shí),年銷售量為24萬件;銷售單價(jià)每增加10元,年銷售量將減少1萬件.設(shè)銷售單價(jià)為x(元)(x>120),年銷售量為y(萬件),第一年年獲利(年獲利=年銷售額-生產(chǎn)成本-投資)為z(萬元).
(1)請(qǐng)直接寫出y與x之間,z與x之間的函數(shù)關(guān)系式:
 
,
 
;
(2)計(jì)算銷售單價(jià)為200元時(shí)的第一年年獲利,請(qǐng)問公司此時(shí)虧損還是盈利?并說明為了得到同樣的年獲利,銷售單價(jià)還可以定為多少元?
(3)公司計(jì)劃:在第一年按年獲利最大時(shí)確定的銷售單價(jià)進(jìn)行銷售;第二年后總獲利要不低于1840萬元.請(qǐng)說明,第二年的銷售單價(jià)x應(yīng)確定在什么范圍內(nèi).
分析:(1)由題意根據(jù)單價(jià)之間的關(guān)系,銷售單價(jià)每增加10元,年銷售量將減少1萬件,年獲利=年銷售額-生產(chǎn)成本-投資,列出y與x,z與x的函數(shù)關(guān)系式;(2)把x=200代入函數(shù)式求出z;(3)在第一年按年獲利最大時(shí)確定的銷售單價(jià)進(jìn)行銷售,根據(jù)z與x的關(guān)系式,配方求出最值;第二年后總獲利要不低于1840萬元,令z≤1840解出x值的范圍.
解答:解:由題意得:
(1)y=24-
x-120
10
,即:y=-
1
10
x+36
,
z=-
1
10
x2+42x-4660
;
(2)當(dāng)x取200時(shí),z=-
1
10
×2002+42×200-4660=-260

此時(shí)公司虧損了260萬元
因?yàn)榇藪佄锞的對(duì)稱軸為x=210
所以當(dāng)x=220時(shí),也能獲得同樣的年獲利
(3)z=-
1
10
(x-210)2-250

∴當(dāng)x=210時(shí),z取最大值,最大值為-250,
也就是說:當(dāng)銷售單價(jià)定為210元時(shí),年獲利最大,并且到第一年年底公司還差250萬元就可收回全部投資
第二年的銷售單價(jià)定為x元,
則年獲利為z=(-
1
10
x+36)(x-60)

=-
1
10
x2+42x-2160=-
1
10
(x-210)2+2250
,
當(dāng)z年獲利為1840萬時(shí),
即z=1840+250=2090,
所以令2090=-
1
10
(x-210)2+2250
,
解得x1=170,x2=250,
當(dāng)170≤x≤250時(shí),z≥2090,
∴第二年的銷售單價(jià)應(yīng)確定在不低于170元且不高于250元的范圍內(nèi).
點(diǎn)評(píng):此題考查一次函數(shù)和二次函數(shù)的性質(zhì)及其應(yīng)用,將實(shí)際問題轉(zhuǎn)化為求函數(shù)最值問題,從而來解決實(shí)際問題,看似復(fù)雜其實(shí)比較簡單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某高科技發(fā)展公司投資500萬元,成功研制出一種市場(chǎng)需求量較大的高科技替代品,并投入資金1500萬元進(jìn)行批量生產(chǎn).已知生產(chǎn)每件產(chǎn)品還需再投入40元,在銷售過程中發(fā)現(xiàn):當(dāng)銷售單價(jià)定為100元時(shí),年銷售量為20萬件;銷售單價(jià)每增加10元,年銷售量將減少1萬件,設(shè)銷售單價(jià)為x(元),年銷售量為y(萬件),年獲利為z(萬元).
(1)寫出y與x及z與x的函數(shù)關(guān)系式;
(2)公司計(jì)劃:在第一年按獲利最大確定銷售單價(jià),進(jìn)行銷售;第二年年獲利不低于1130萬元,借助函數(shù)的說明,第二年的銷售單價(jià)(元)應(yīng)確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

“百誠”公司投資750萬元,成功研制出一種市場(chǎng)需求量較大的產(chǎn)品,并再投入資金1750萬元進(jìn)行相關(guān)生產(chǎn)設(shè)備的購買.已知生產(chǎn)過程中,每件產(chǎn)品的成本為60元.在銷售過程中發(fā)現(xiàn),當(dāng)銷售單價(jià)定為120元時(shí),年銷售量為24萬件;銷售單價(jià)每增加10元,年銷售量將減少1萬件.設(shè)銷售單價(jià)為x(元)(x>120),年銷售量為y(萬件),第一年年獲利(年獲利=年銷售額-生產(chǎn)成本-投資)為z(萬元).
(1)請(qǐng)直接寫出y與x之間,z與x之間的函數(shù)關(guān)系式:
______,______;
(2)計(jì)算銷售單價(jià)為200元時(shí)的第一年年獲利,請(qǐng)問公司此時(shí)虧損還是盈利?并說明為了得到同樣的年獲利,銷售單價(jià)還可以定為多少元?
(3)公司計(jì)劃:在第一年按年獲利最大時(shí)確定的銷售單價(jià)進(jìn)行銷售;第二年后總獲利要不低于1840萬元.請(qǐng)說明,第二年的銷售單價(jià)x應(yīng)確定在什么范圍內(nèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“百誠”公司投資750萬元,成功研制出一種市場(chǎng)需求量較大的產(chǎn)品,并再投入資金1750萬元進(jìn)行相關(guān)生產(chǎn)設(shè)備的購買.已知生產(chǎn)過程中,每件產(chǎn)品的成本為60元.在銷售過程中發(fā)現(xiàn),當(dāng)銷售單價(jià)定為120元時(shí),年銷售量為24萬件;銷售單價(jià)每增加10元,年銷售量將減少1萬件.設(shè)銷售單價(jià)為x(元)(x>120),年銷售量為y(萬件),第一年年獲利(年獲利=年銷售額-生產(chǎn)成本-投資)為z(萬元).
(1)請(qǐng)直接寫出y與x之間,z與x之間的函數(shù)關(guān)系式:
______,______;
(2)計(jì)算銷售單價(jià)為200元時(shí)的第一年年獲利,請(qǐng)問公司此時(shí)虧損還是盈利?并說明為了得到同樣的年獲利,銷售單價(jià)還可以定為多少元?
(3)公司計(jì)劃:在第一年按年獲利最大時(shí)確定的銷售單價(jià)進(jìn)行銷售;第二年后總獲利要不低于1840萬元.請(qǐng)說明,第二年的銷售單價(jià)x應(yīng)確定在什么范圍內(nèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)九年級(jí)(上)月考數(shù)學(xué)試卷(12月份)(解析版) 題型:解答題

“百誠”公司投資750萬元,成功研制出一種市場(chǎng)需求量較大的產(chǎn)品,并再投入資金1750萬元進(jìn)行相關(guān)生產(chǎn)設(shè)備的購買.已知生產(chǎn)過程中,每件產(chǎn)品的成本為60元.在銷售過程中發(fā)現(xiàn),當(dāng)銷售單價(jià)定為120元時(shí),年銷售量為24萬件;銷售單價(jià)每增加10元,年銷售量將減少1萬件.設(shè)銷售單價(jià)為x(元)(x>120),年銷售量為y(萬件),第一年年獲利(年獲利=年銷售額-生產(chǎn)成本-投資)為z(萬元).
(1)請(qǐng)直接寫出y與x之間,z與x之間的函數(shù)關(guān)系式:
______,______;
(2)計(jì)算銷售單價(jià)為200元時(shí)的第一年年獲利,請(qǐng)問公司此時(shí)虧損還是盈利?并說明為了得到同樣的年獲利,銷售單價(jià)還可以定為多少元?
(3)公司計(jì)劃:在第一年按年獲利最大時(shí)確定的銷售單價(jià)進(jìn)行銷售;第二年后總獲利要不低于1840萬元.請(qǐng)說明,第二年的銷售單價(jià)x應(yīng)確定在什么范圍內(nèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案