如圖,AB為⊙O的直徑,割線PCD交⊙O于C、D,∠PAC=∠PDA.
(1)求證:PA是⊙O的切線;
(2)若PA=6,CD=3PC,求PD的長.

【答案】分析:要證明PA是⊙O的切線只要證明∠PAB=90°即可;已知PA是⊙O的切線,PCD是割線,則可以利用切割線定理來求得PD的長.
解答:(1)證明:連接BD;
∵AB為⊙O的直徑,
∴∠BDA=90°;
∵∠PAC=∠PDA,∠CAB=∠CDB,
∴∠PAC+∠CAB=∠PDA+∠CDB=∠BDA=90°,
∴∠PAB=90°,
∴PA是⊙O的切線.

(2)解:設PC=a;
∵CD=3PC,
∴CD=3a;
∵PA是⊙O的切線,PCD是割線,
∴PA2=PC•PD,
即62=a•(a+3a),
解得a=3,
PD=PC+CD=a+3a=4a,
∴PD=12.
點評:此題考查學生對切線的判定及切割線定理的掌握情況.會根據(jù)切割線定理作為相等關系列方程求線段的長度是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( 。
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,則水管的長為
40m
40m

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應性考試數(shù)學試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中數(shù)學 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測試數(shù)學試卷(解析版) 題型:選擇題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步練習冊答案