如圖,在矩形ABCD中,點E、F分別在邊AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的長.
解:∵△ABE∽△DEF,∴AB:DE=AE:DF.
即6:2=9:DF,∴DF=3.                        
在矩形ABCD中,∠D=90°.
∴在Rt△DEF中,EF=13.                     
利用相似三角形的對應(yīng)邊成比例,求出DF的長度,在直角三角形DEF中,利用勾股定理求出斜邊EF長
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB∥CD,AD,BC相交于E,F為EC上一點,且∠EAF=∠C.

求證:(1) ∠EAF=∠B; (2)AF2=FE·FB

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:在△ABC中,∠ACB=900,點P是線段AC上一點,過點A作AB的垂線,交BP的延長線于點M,MN⊥AC于點N,PQ⊥AB于點Q,A0=MN.
(1)如圖l,求證:PC=AN;
(2) 如圖2,點E是MN上一點,連接EP并延長交BC于點K,點D是AB上一點,連接DK,∠DKE=∠ABC,EF⊥PM于點H,交BC延長線于點F,若NP=2,PC=3,CK:CF=2:3,求DQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一條河的兩岸有一段是平行的.在河的這一岸每相距5米在一棵樹,在河的對岸每相距50米在一根電線桿.在這岸離開岸邊25米處看對岸,看到對岸相鄰的兩根電線桿恰好被這岸的兩棵樹遮住,并且在這兩棵樹之間還有三棵樹,求河寬.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD的E點上,BG=10.
(1)當折痕的另一端F在AB邊上時,如圖(1).求△EFG的面積.

(2)當折痕的另一端F在AD邊上時,如圖(2).證明四邊形BGEF為菱形,并求出折痕GF的長. 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在中,,.動點分別在直線上運動,且始終保持.設(shè),則之間的函數(shù)關(guān)系用圖象大致可以表示為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,D、E分別是AB和AC的中點,F(xiàn)是BC延長線上的一點,DF平分CE于點G,,則      ,△ADE與△ABC的周長之比為      ,△CFG與△BFD的面積之比為      。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,DE∥BC,則下列不成立的是   。ā 。
A. B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在8×8的網(wǎng)格中,每個小正方形的頂點叫做格點,△OAB的頂點都在格點上,請你在網(wǎng)格中畫出一個△OCD,使它的頂點在格點上,且使△OCD與△OAB相似,相似比為2︰1.

查看答案和解析>>

同步練習冊答案