如圖,平面直角坐標(biāo)系中,直線y=
3
3
x
與直線x=3交于點P,點A是直線x=3與x軸的交點,將直線OP繞著點O、直線AP繞著點A以相同的速度逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)過程中,兩條直線交點始終為P,當(dāng)直線OP與y軸正半軸重合時,兩條直線同時停止轉(zhuǎn)動.
(1)當(dāng)旋轉(zhuǎn)角度為15°時,點P坐標(biāo)為______;
(2)整個旋轉(zhuǎn)過程中,點P所經(jīng)過的路線長為______.
∵直線y=
3
3
x與直線x=3交于點P,
∴點P的坐標(biāo)為:(3,
3
),
∴OA=3,
∴tan∠POA=
PA
OA
=
3
3

∴∠POA=30°.
(1)如圖,當(dāng)旋轉(zhuǎn)角度為15°時,
過點P作PC⊥OA于C,作AB⊥OP于B,
∵∠POA=30°+15°=45°,∠OAP=90°-15°=75°,
∴∠BAO=∠POA=45°,
∴∠BAP=∠OAP-∠BAO=75°-45°=30°,
在Rt△OAB中,OB=AB=OA•cos∠POA=3×
2
2
=
3
2
2

在Rt△ABP中,BP=AB•tan∠PAB=
3
2
2
×
3
3
=
6
2

∴OP=OB+BP=
3
2
2
+
6
2
,
在Rt△OCP中,OC=PC=OP•sin∠POA=(
3
2
2
+
6
2
)×
2
2
=
3+
3
2
,
∴點P的坐標(biāo)為:(
3+
3
2
3+
3
2
);

(2)整個旋轉(zhuǎn)過程中,點P所經(jīng)過的路線是圓弧.
當(dāng)兩條直線停止轉(zhuǎn)動時,點P到點P3處,如圖2,
則∠AOP3=90°,
∴OP旋轉(zhuǎn)了60°,
∴∠OAP3=90°-60°=30°,
∴OP3=OA•tan∠OAP=3×
3
3
=
3
;
∴P1P3OA,
則點P所經(jīng)過的路線如圖3,
設(shè)P2
P1P3
的中點,D是圓心,
連接P2D并延長,交P1P3于點C,交OA于E,連接P2A,P2O,P1D,
∴P2C⊥P1P3,P2C⊥OA,P1C=P3C=OE=AE=
1
2
AC=
3
2

∴P2A=P2O,
∴∠P2OA=∠P2AO,
設(shè)旋轉(zhuǎn)角為x°,
則∠P2AO=90°-x°,∠P2OA=30°+x°,
∴90-x=30+x,
解得:x=30,
∴∠P2OA=60°,
∴P2E=OE•tan∠P2OA=
3
2
×
3
=
3
3
2
,
∴P2C=P2E-CE=
3
2
,
設(shè)半徑為r,
則r2=(
3
2
2+(r-
3
2
2
解得:r=
3
,
∴CD=r-P2C=
3
2

∴tan∠CP3D=
CD
P3C
=
3
3
,
∴∠CP3D=∠CP1D=30°,
∴∠P1DP3=120°,
∴整個旋轉(zhuǎn)過程中,點P所經(jīng)過的路線長為:
120×π×
3
180
=
2
3
3
π.
故答案為:(1)(
3+
3
2
,
3+
3
2
);(2)
2
3
3
π.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,直線l:y=kx+b(k>0)與y軸相交于點A1,以O(shè)A1為邊作正方形OA1B1C1,記作第一個正方形;然后延長C1B1與直線相交于點A2,再以C1A2為邊作正方形C1A2B2C2,記作第二個正方形;同樣延長C2B2與直線相交于點A3,再以C2A3為邊作正方形C2A3B3C3,記作第三個正方形;…依此類推,又知B1(1,1),B2(3,2).
(1)求直線l的解析式;
(2)第三個正方形的邊長是多少?
(3)試推測第n個正方形的邊長為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在梯形ABCO中,OCAB,以O(shè)為原點建立平面直角坐標(biāo)系,A、B、C三點的坐標(biāo)分別是A(8,0),B(8,10),C(0,4).點D(4,7)為線段BC的中點,動點P從O點出發(fā),以每秒1個單位的速度,沿折線OAB的路線運(yùn)動,運(yùn)動時間為t秒.
(1)求直線BC的解析式;
(2)設(shè)△OPD的面積為s,求出s與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(3)當(dāng)t為何值時,△OPD的面積是梯形OABC的面積的
3
8
?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一次函數(shù)y=kx+b與y軸交于點(0,2),且過點(3,5).
求:①一次函數(shù)的表達(dá)式;②直線與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知點A的坐標(biāo)為(2,0),動點P在直線y=
1
2
x-3
上,求使△PAO為直角三角形的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線l是一次函數(shù)y=kx+b的圖象.
求:(1)這個函數(shù)的解析式;
(2)當(dāng)x=4時,y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠用如圖所示的長方形和正方形紙板,做成如圖乙所示的豎式與橫式兩種長方體形狀的無蓋紙盒.
(1)現(xiàn)有正方形紙板162張,長方形紙板340張,若要做兩種紙盒共100個,設(shè)做豎式紙盒x個.
①根據(jù)題意,完成以下表格:
紙盒
紙板
豎式紙盒(個)橫式紙盒(個)
x100-x
正方形紙板(張)______2(100-x)
長方形紙板(張)4x______
②按兩種紙盒的生產(chǎn)個數(shù)來分,有哪幾種生產(chǎn)方案?
(2)若每個豎式紙盒獲利2元,橫式紙盒獲利3元,求上述哪種方案銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(北師大版)如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點O為圓心的⊙O的半徑為
2
-1,直線a:y=-x-
2
與坐標(biāo)軸分別交于A,C兩點,點B的坐標(biāo)為(4,1),⊙B與X軸相切于點M.
(1)求點A的坐標(biāo)及∠CAO的度數(shù);
(2)⊙B以每秒1個單位長度的速度沿x軸負(fù)方向平移,同時,直線a繞點A順時針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時,直線a也恰好與⊙B第一次相切.問:直線AC繞點A每秒旋轉(zhuǎn)多少度;
(3)如圖2,過A,O,C三點作⊙O1,點E是劣弧
AO
上一點,連接EC,EA.EO,當(dāng)點E在劣弧
AO
上運(yùn)動時(不與A,O兩點重合),
EC-EA
EO
的值是否發(fā)生變化?如果不變,求其值;如果變化,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,當(dāng)三角形直角頂點P坐標(biāo)為(3,3)時,設(shè)一直角邊與x軸的正半軸交于點A,另一直角邊與y軸交于點B,在三角板繞點P旋轉(zhuǎn)的過程中,使得△POA為等腰三角形.請寫出所有滿足條件的點B的坐標(biāo)______.

查看答案和解析>>

同步練習(xí)冊答案