如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達(dá)點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設(shè)運動時間為t秒.
(1)當(dāng)t= 時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當(dāng)ι為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.
解:(1)7。
(2)點P從B到C的時間是3秒,此時點Q在AB上,則
當(dāng)時,點P在BC上,點Q在CA上,若△PCQ為等腰三角形,則一定為等腰直角三角形,有:PC=CQ,即3﹣t=2t,解得:t=1。
當(dāng)時,點P在BC上,點Q在AB上,若△PCQ為等腰三角形,則一定有PQ=PC(如圖1),則點Q在PC的中垂線上。
作QH⊥AC,則QH=PC,△AQH∽△ABC,
在Rt△AQH中,AQ=2t﹣4,
則。
∵PC=BC﹣BP=3﹣t,
∴,解得:。
綜上所述,在點P從點B到點C的運動過程中,當(dāng)t=1或時,△PCQ為等腰三角形。
(3)在點Q從點B返回點A的運動過程中,P一定在AC上,
則PC=t﹣3,BQ=2t﹣9,即。
同(2)可得:△PCQ中,PC邊上的高是:,
∴。
∴當(dāng)t=5時,s有最大值,此時,P是AC的中點(如圖2)。
∵沿直線PD折疊,使點A落在直線PC上,
∴PD一定是AC的中垂線。
∴AP=CP=AC=2,PD=BC=。
∴AQ=14﹣2t=14﹣2×5=4。
如圖2,連接DC(即AD的折疊線)交PQ于點O,過Q作QE⊥CA于點E,過O作OF⊥CA于點F,則△PCO即為折疊后的△APD與△PCQ重疊部分的面積。
則QE=AQ=×4=,EA=AQ=×4=。
∴EP=,CE=。
設(shè)FP=x,F(xiàn)O=y,則CF=。
由△CFO∽△CPD得,即,∴。
由△PFO∽△PEQ得,即,∴。解得:。
∴△PCO即為折疊后的△APD與△PCQ重疊部分的面積。
【解析】
試題分析:(1)首先利用勾股定理求得AC的長度,點P與點Q相遇一定是在P由B到A的過程中,利用方程即可求得:
在Rt△ABC中,∵∠C=90°,BC=3,AB=5,∴根據(jù)勾股定理得AC=4。
則Q從C到B經(jīng)過的路程是9,需要的時間是4.5秒,此時P運動的路程是4.5,P和Q之間的距離是:3+4+5﹣4.5=7.5。
根據(jù)題意得:,解得:t=7。
(2)因為點P從B到C的時間是3秒,此時點Q在AB上,所以分(點P在BC上,點Q在CA上)和(點P在BC上,點Q在AB上)兩種情況進(jìn)行討論求得t的值。
(3)在點Q從點B返回點A的運動過程中,P一定在AC上,則PC的長度是t﹣3,然后利用相似三角形的性質(zhì)即可利用t表示出s的值,然后利用二次函數(shù)的性質(zhì)即可求得s最大時t的值,此時,P是AC的中點,直線PD折疊,使點A落在直線PC上,則PD一定是AC的中垂線。因此,連接DC(即AD的折疊線)交PQ于點O,過Q作QE⊥CA于點E,過O作OF⊥CA于點F,則△PCO即為折疊后的△APD與△PCQ重疊部分的面積。應(yīng)用△CFO∽△CPD和△PFO∽△PEQ得比例式求出OF的長即可求得△PCO即為折疊后的△APD與△PCQ重疊部分的面積。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com