在下列方程中為一元一次方程的是(  )
分析:只含有一個未知數(shù)(元),并且未知數(shù)的指數(shù)是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常數(shù)且a≠0).
解答:解:A、該方程中的未知數(shù)的最高次數(shù)是2,屬于一元二次方程,故本選項錯誤;
B、該方程中含有兩個未知數(shù),屬于二元一次方程,故本選項錯誤;
C、該方程不是整式方程,是分式方程,故本選項錯誤;
D、該方程符合一元一次方程的定義,故本選項正確;
故選:D.
點評:本題主要考查了一元一次方程的一般形式,只含有一個未知數(shù),且未知數(shù)的指數(shù)是1.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

一次數(shù)學興趣小組的活動課上,師生有下面的一段對話,請你閱讀完后再解答.

老師:同學們,今天我們來探索如下方程的解法:

學生甲:老師,這個方程先去括號,在合并同類項,行嗎?

老師:這樣原方程可整理為,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察,看看這個方程有什么特點?

學生乙:老師,我發(fā)現(xiàn)方程中是整體出現(xiàn)的,最好不要去括號!

教師:很好,我國我們把看成一個整體,用表示,即,那么原方程就變成了

全體學生:(同學們都特別高興)噢,這不是我們最熟悉的一元二次方程嗎?

老師:大家真會觀察和思考,太棒了!顯然一元二次方程的根是,,那么就有

學生丙:對啦,再解這兩個方程,可得原方程的根是,,,.嗬,有這么多解!

老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低方程的次數(shù),這是一種重要的轉(zhuǎn)化方法.

全體學生:OK,換元法真神奇!

現(xiàn)在,請你用換元法解下列分式方程:

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年山東省濰坊市諸城市繁華中學九年級(上)月考數(shù)學試卷(10月份)(解析版) 題型:解答題

閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程

查看答案和解析>>

科目:初中數(shù)學 來源:《28.3 用一元二次方程解決實際問題》2010年習題精選(二)(解析版) 題型:解答題

閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年河南省南陽市書院中學九年級(上)第一學月數(shù)學試卷(解析版) 題型:解答題

閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程

查看答案和解析>>

同步練習冊答案