如圖,在△ABC中,∠ABC和∠ACB的平分線交于E點(diǎn),過(guò)點(diǎn)E 作MN∥BC交于點(diǎn)M,交AC于N點(diǎn),若BM+CN=8,則線段MN的長(zhǎng)為
8
8
分析:由∠ABC、∠ACB的平分線相交于點(diǎn)E,∠MBE=∠EBC,∠ECN=∠ECB,利用兩直線平行,內(nèi)錯(cuò)角相等,利用等量代換可∠MBE=∠MEB,∠NEC=∠ECN,然后即可求得結(jié)論.
解答:解:∵∠ABC、∠ACB的平分線相交于點(diǎn)E,
∴∠MBE=∠EBC,∠ECN=∠ECB,
∵M(jìn)N∥BC,
∴∠EBC=∠MEB,∠NEC=∠ECB,
∴∠MBE=∠MEB,∠NEC=∠ECN,
∴BM=ME,EN=CN,
∴MN=ME+EN,
即MN=BM+CN.
∵BM+CN=8
∴MN=8,
故答案為:8.
點(diǎn)評(píng):此題考查學(xué)生對(duì)等腰三角形的判定與性質(zhì)和平行線性質(zhì)的理解與掌握.此題關(guān)鍵是證明△BME△CNE是等腰三角形
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案