【題目】如圖,AB為⊙O的直徑,點C在⊙O外,∠ABC的平分線與⊙O交于點D,∠C=90°.
(1)求證:CD是⊙O的切線;
(2)若∠CDB=60°,AB=18,求的長.
【答案】(1)見解析;(2)3π.
【解析】
(1)連接OD,求出OD//BC,求出OD⊥DC,根據(jù)切線的判定得出即可;
(2)求出∠CBD=30°,求出∠AOD=∠ABC=60°,求出半徑OA,根據(jù)弧長公式求出即可.
(1)連接OD,
∵OD=OB,
∴∠ODB=∠OBD,
∵BD平分∠ABC,
∴∠CBD=∠OBD,
∴∠CBD=∠ODB,
∴OD//BC,
∴∠C+∠ODC=180°,
∵∠C=90°.
∴∠ODC=90°,即OD⊥DC,
∵OD過O,
∴CD是⊙O的切線;
(2)∵∠CDB=60°,∠C=90°,
∴∠CBD=30°,
∵BD平分∠ABC,
∴∠ABC=60°,
∵OD//BC,
∴∠AOD=∠ABC=60°,
∵直徑AB=18,
∴半徑OA=9,
∴弧AD的長是=3π.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC,BD交于點O,AE⊥BC交CB延長線于E,CF∥AE交AD延長線于點F.
(1)求證:四邊形AECF是矩形;
(2)連接OE,若AE=8,AD=10,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學號召全校學生進行安全教育網(wǎng)絡(luò)學習,并對部分學生的學習情況進行了隨機調(diào)查.對部分學生的成績(x為整數(shù),滿分100分)進行統(tǒng)計,并繪制了如下統(tǒng)計圖表.
調(diào)查結(jié)果頻數(shù)分布表
| 調(diào)查結(jié)果扇形統(tǒng)計圖 |
根據(jù)所給信息,解答下列問題:
(1)填空:_________,_________;
(2)求扇形統(tǒng)計圖中,m的值及A組對應(yīng)的圓心角的度數(shù);
(3)若參加學習的同學共有1500人,請你估計成績不低于80分的同學有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一組數(shù)據(jù)1,2,3,4,x的平均數(shù)與中位數(shù)相同,則實數(shù)x的值不可能是( 。
A.0B.2.5C.3D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)探究:
問題:如圖1,等邊三角形ABC的邊長為6,點O是∠ABC和∠ACB的角平分線交點,∠FOG=120°,繞點O任意旋轉(zhuǎn)∠FOG,分別交△ABC的兩邊于D,E兩點求四邊形ODBE的面積.
討論:
①甲:在∠FOG旋轉(zhuǎn)過程中,當OF經(jīng)過點B時,OG一定經(jīng)過點C.
②乙:小明的分析有道理,這樣,我們就可以利用“ASA”證出△ODB≌△OEC.
③丙:因為△ODB≌△OEC,所以只要算出△OBC的面積就得出了四邊形ODBE的面積.
老師:同學們的思路很清晰,也很正確,在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題請你按照探究的思路,直接寫出四邊形ODBE的面積:________.
(2)應(yīng)用:
①特例:如圖2,∠FOG的頂點O在等邊三角形ABC的邊BC上,OB=2,OC=4,邊OG⊥AC于點E,OF⊥AB于點D,求△BOD面積.
②探究:如圖3,已知∠FOG=60°,頂點O在等邊三角形ABC的邊BC上,OB=2,OC=4,記△BOD的面積為x,△COE的面積為y,求xy的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B 的坐標為(8,4),反比例函數(shù)y=(k>0)的圖象分別交邊BC、AB 于點D、E,連結(jié)DE,△DEF與△DEB關(guān)于直線DE對稱,當點F恰好落在線段OA上時,則k的值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A是直線y=x與反比例函數(shù)y=(k>0,x>0)的交點,B是y=圖象上的另一點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過點P作PM⊥x軸,PN⊥y軸,垂足分別為M,N.設(shè)四邊形OMPN的面積為S,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.
(1)求拋物線的解析式;
(2)當點P在直線OD下方時,求面積的最大值.
(3)直線OQ與線段BC相交于點E,當與相似時,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,,AE⊥BD,垂足是E.點F是點E關(guān)于AB的對稱點,連接AF、BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).當點F分別平移到線段AB、AD上時,求出相應(yīng)的m的值;
(3)如圖②,將△ABF繞點B順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的為,在旋轉(zhuǎn)過程中,設(shè)所在的直線與直線AD交于點P,與直線BD交于點Q,若△DPQ為等腰三角形,請直接寫出此時DQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com