如圖所示,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的-個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連結(jié)CP,D點(diǎn)是線段AB上一點(diǎn),連PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△OCP為等腰三角形,求這時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)∠CPD=∠OAB,且=,求這時(shí)點(diǎn)P的坐標(biāo).
解:(1)作BQ⊥x軸于Q. ∵四邊形OABC是等腰梯形,∴∠BAQ=∠COA=60°在Rt△BQA中,BA=4,∴BQ=AB·sin∠BAO=4×sin60°=AQ=AB·cos∠BAO=4×cos60°=2,∴OQ=OA-AQ=7-2=5點(diǎn)B在第一象限內(nèi),∴點(diǎn)B的坐標(biāo)為(5,) (2)若△OCP為等腰三角形,∵∠COP=60°,∴△OCP為等邊三角形或是頂角為120°的等腰三角形若△OCP為等邊三角形,OP=OC=PC=4,且點(diǎn)P在x軸的正半軸上,∴點(diǎn)P的坐標(biāo)為(4,0)若△OCP是頂角為120°的等腰三角形,則點(diǎn)P在x軸的負(fù)半軸上,且OP=OC=4∴點(diǎn)P的坐標(biāo)為(-4,0)∴點(diǎn)P的坐標(biāo)為(4,0)或(-4,0) (3)∵∠CPA=∠OCP+∠COP 即∠CPD+∠DPA=∠COP+∠OCP而∠CPD=∠OAB=∠COP=60° ∴∠OCP=∠DPA ∵∠COP=∠BAP∴△OCP∽△APD ∴ ∴OP·AP=OC·AD ∵ ∴BD=AB=,AD=AB-BD=4-= ∵AP=OA-OP=7-OP ∴OP(7-OP)=4× 解得OP=1或6∴點(diǎn)P坐標(biāo)為(1,0)或(6,0) |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
9 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com