【題目】某商店要選購甲、乙兩種零件,若購進甲種零件10件,乙種零件12件,共需要2100元;若購進甲種零件5件,乙種零件8件,共需要1250元.
(1)求甲、乙兩種零件每件分別為多少元?
(2)若每件甲種零件的銷售價格為108元,每件乙種零件的銷售價格為140元,根據(jù)市場需求,商店決定,購進甲種零件的數(shù)量比購進乙種零件的數(shù)量的3倍還多2件,這樣零件全部售出后,要使總獲利超過976元,至少應購進乙種零件多少件?
【答案】(1)甲種零件的單價是90元/件,乙種零件的單價是100元/件;(2)至少應購進乙種零件11件.
【解析】
(1)設甲種零件的單價是x元/件,乙種零件的單價是y元/件,根據(jù)“購進甲種零件10件,乙種零件12件,共需要2100元;若購進甲種零件5件,乙種零件8件,共需要1250元”列出方程組并解答;
(2)設該商店本次購進乙種零件m個,則購進甲種零件個,根據(jù)“總利潤=單個利潤×銷售數(shù)量”,結(jié)合總獲利大于976元,即可得出關(guān)于m的一元一次不等式,解之取其中的最小整數(shù)值即可得出結(jié)論.
(1)設甲種零件的單價是x元/件,乙種零件的單價是y元/件
由題意得
解得
答:甲種零件的單價是90元/件,乙種零件的單價是100元/件;
(2)設該商店本次購進乙種零件m個,則購進甲種零件個
由題意得
解得
因為m是整數(shù)
所以m最小值是11
答:至少應購進乙種零件11件.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4 米.
(1)求新傳送帶AC的長度.
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù): .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于新冠肺炎病毒肆虐全球,市面上 KN95 等防護型口罩出現(xiàn)熱銷.武漢市某學校準備購進一批口罩,已知 3 個 A 型口罩和 2 個 B 型口罩共需 95 元;10 個 A 型口罩和 5 個 B 型口罩共需 250 元.
(1)求一個 A 型口罩和一個 B 型口罩的售價各是多少元;
(2)學校準備購進這兩種型號的口罩共 500 個,正好趕上藥店對口罩價格進行調(diào)整,其中 A 型口罩售價比原價提高 7 元,B 型口罩按原價九五折出售,若學校此次購買兩種口罩的總費用不超過 10000 元,且保證購買的 B 型口罩數(shù)量不少于135 個,請設計出最省錢的購買方案,并給出最低費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明.(在括號中注明理由)
已知:如圖,BE∥CD,∠A=∠1,
求證:∠C=∠E.
證明:∵BE∥CD,(已知)
∴∠2=∠C,( )
又∵∠A=∠1,(已知)
∴AC∥ ,( )
∴∠2= ,( )
∴∠C=∠E(等量代換)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市舉行店慶活動,對甲、乙兩種商品實行打折銷售,打折前,購買2件甲商品和3件乙商品需要180元;購買1件甲商品和4件乙商品需要200元,而店慶期間,購買10件甲商品和10件乙商品僅需520元,這比打折前少花多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器商城銷售、兩種型號的電風扇,進價分別為元、元,下表是近兩周的銷售情況:
銷售時段 | 銷售型號 | 銷售收入 | |
種型號 | 種型號 | ||
第一周 | 臺 | 臺 | 元 |
第二周 | 臺 | 臺 | 元 |
(1)求、兩種型號的電風扇的銷售單價;
(2)若商城準備用不多于元的金額再采購這兩種型號的電風扇共臺,求種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下商城銷售完這臺電風能否實現(xiàn)利潤超過元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣3x+k與x軸交于A、B兩點,與y軸交于點C(0,﹣4).
(1)k=;
(2)點A的坐標為 , B的坐標為;
(3)設拋物線y=x2﹣3x+k的頂點為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進價為20元/件.試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤 (元)與銷售單價 (元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元.
請比較哪種方案的最大利潤更高,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com