【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作AC的垂線交AC于點E,交AB的延長線于點F.
(1)求證:DE與⊙O相切;
(2)若CD=BF,AE=3,求DF的長.
【答案】(1)見解析;(2)DF=2.
【解析】
(1)連接OD,求出AC∥OD,求出OD⊥DE,根據(jù)切線的判定得出即可;
(2)求出∠1=∠2=∠F=30°,求出AD=DF,解直角三角形求出AD,即可求出答案.
(1)證明:連接OD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BC,
又∵AB=AC,
∴∠1=∠2,
∵OA=OD,
∴∠2=∠ADO,
∴∠1=∠ADO,
∴OD∥AC,
∵DE⊥AC,
∴∠ODF=∠AED=90°,
∴OD⊥ED,
∵OD過O,
∴DE與⊙O相切;
(2)解:∵AB=AC,AD⊥BC,
∴∠1=∠2,CD=BD,
∵CD=BF,
∴BF=BD,
∴∠3=∠F,
∴∠4=∠3+∠F=2∠3,
∵OB=OD,
∴∠ODB=∠4=2∠3,
∵∠ODF=90°,
∴∠3=∠F=30°,∠4=∠ODB=60°,
∵∠ADB=90°,
∴∠2=∠1=30°,
∴∠2=∠F,
∴DF=AD,
∵∠1=30°,∠AED=90°,
∴AD=2ED,
∵AE2+DE2=AD2,AE=3,
∴AD=2,
∴DF=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,點是的中點,點是邊上一點,且.
(1)求證:;
(2)將“正方形”改成“矩形”,其他條件均不變,如圖2,你認為仍然有“”嗎?若你同意,請以圖2為例加以證明;若你不同意,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)過點E(8,0),矩形ABCD的邊AB在線段OE上(點A在點B的左側(cè)),點C、D在拋物線上,∠BAD的平分線AM交BC于點M,點N是CD的中點,已知OA=2,且OA:AD=1:3.
(1)求拋物線的解析式;
(2)F、G分別為x軸,y軸上的動點,順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長的最小值;
(3)在x軸下方且在拋物線上是否存在點P,使△ODP中OD邊上的高為?若存在,求出點P的坐標;若不存在,請說明理由;
(4)矩形ABCD不動,將拋物線向右平移,當(dāng)平移后的拋物線與矩形的邊有兩個交點K、L,且直線KL平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰直角和等腰直角分別在直線上.
(1)如圖所示,分別在線段上,若,求證:.
(2)若分別在線段外(還在直線上),根據(jù)題意,畫出圖形,那么(1)的結(jié)論是否依然成立,若成立,寫出證明過程;若不成立,說明原因;
(3)如圖,若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】跳遠運動員李陽對訓(xùn)練效果進行測試.6次跳遠的成績?nèi)缦拢?/span>7.5,7.7,7.6,7.7,7.9,7.8(單位:m)這六次成績的平均數(shù)為7.7m,方差為.如果李陽再跳一次,成績?yōu)?/span>7.7m.則李陽這7次跳遠成績的方差_____(填“變大”、“不變”或“變小”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”譯文:“今有甲乙二人,不知其錢包里有多少錢.若乙把自己一半的錢給甲,則甲的錢數(shù)為50錢;而甲把自己的錢給乙,則乙的錢數(shù)也為50錢.問甲、乙各有多少錢?”設(shè)甲、乙原有錢數(shù)分別為、,下列所列方程組正確的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵市民節(jié)約用水,某市自來水公司按分段收費標準收費,右圖反映的是每月收水費y(元)與用水量x(噸)之間的函數(shù)關(guān)系
(1)小紅家五月份用水8噸,應(yīng)交水費_____元;
(2)按上述分段收費標準,小紅家三、四月份分別交水費36元和19.8元,問四月份比三月份節(jié)約用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,點,,依次是邊的四等分點,點,,依次是邊的四等分點,分別以,,為邊向下剪三個寬相等的矩形,如圖所示.若圖中空白部分的面積和為,則圖中陰影部分的面積和是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com