【題目】如圖1,已知點(diǎn)A、B、C、D在一條直線上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.
(1)求證:△ACE≌△DBF;
(2)如果把△DBF沿AD折翻折使點(diǎn)F落在點(diǎn)G,如圖2,連接BE和CG. 求證:四邊形BGCE是平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組至少有3個整數(shù)解,且使關(guān)于y的分式方程=2有非負(fù)整數(shù)解,則滿足條件的所有整數(shù)a的和是( )
A. 14B. 15C. 23D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,
(1)若二次函數(shù)y=mx2+nx+1經(jīng)過點(diǎn)(2,0),(3,1),試分別求出兩個函數(shù)的解析式.
(2)若一次函數(shù)y=mx+n經(jīng)過點(diǎn)(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(diǎn)(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.
(3)若二次函數(shù)y=mx2+nx+1的頂點(diǎn)坐標(biāo)為A(h,k)(h≠0),同時二次函數(shù)y=x2+x+1也經(jīng)過A點(diǎn),已知﹣1<h<1,請求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2∥l3,且l1與l2的距離為1,l2與l3的距離為3.把一塊含有45°角的直角三角板如圖所示放置,頂點(diǎn)A,B,C恰好分別落在三條直線上,AC與直線l2交于點(diǎn)D,則線段BD的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期豬肉價格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場豬肉的平均價格達(dá)到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.
(1)從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?
(2)5月20日豬肉價格為每千克40元,5月21日,某市決定投入儲備豬肉,并規(guī)定其銷售價格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,E是CD上一點(diǎn),動點(diǎn)P從點(diǎn)A出發(fā)沿折線AE→EC→CB運(yùn)動到點(diǎn)B時停止,動點(diǎn)Q從點(diǎn)A沿AB運(yùn)動到點(diǎn)B時停止,它們的速度均為每秒1cm.如果點(diǎn)P、Q同時從點(diǎn)A處開始運(yùn)動,設(shè)運(yùn)動時間為x(s),△APQ的面積為ycm2,已知y與x的函數(shù)圖象如圖2所示,以下結(jié)論:①AB=5cm;②cos∠AED= ;③當(dāng)0≤x≤5時,y=;④當(dāng)x=6時,△APQ是等腰三角形;⑤當(dāng)7≤x≤11時,y=.其中正確的有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B、C重合)將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BD與CE的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明:如圖2,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC的延長線上時,連接EC,寫出此時線段AD,BD,CD之間的等量關(guān)系,并證明;
(3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,請直接寫出AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(1)班班主任對本班學(xué)生進(jìn)行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類(記為A)、音禾類(記為B)、球類(記為C)、其他類(記為D).根據(jù)調(diào)査結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進(jìn)行了登記且每人只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)査情況把學(xué)生進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計圖.請你結(jié)合圖中所給信息解答下列同題:
(1)七年級(1)班學(xué)生總?cè)藬?shù)為______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為______度,請補(bǔ)全條形統(tǒng)計圖;
(2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名學(xué)生擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.
(3)如果全市有5萬名初中生,那么全市初中生中,喜歡球類的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=.
(1)求a,k的值及點(diǎn)B的坐標(biāo);
(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;
(3)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請你求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com