在平面直角坐標系xOy中(如圖),已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(0,3)和點B(3,0),其頂點記為點C.
(1)確定此二次函數(shù)的解析式,并寫出頂點C的坐標;
(2)將直線CB向上平移3個單位長度,求平移后直線l的解析式;
(3)在(2)的條件下,能否在直線上l找一點D,使得以點C、B、D、O為頂點的四邊形是等腰梯形.若能,請求出點D的坐標;若不能,請說明理由.
(1)把A(0,3)和B(3,0),代入y=x2+bx+c,
得:
c=3
9+3b+c=0
,
解得:
b=-4
c=3

所以,所求二次函數(shù)的解析式為:y=x2-4x+3
所以,頂點C的坐標為(2,-1)

(2)由待定系數(shù)法可求得直線BC的解析式為:y=x-3,
所以,直線l的解析式為:y=x

(3)能.
由直線lBC,即ODBC,可知:
若四邊形CBDO為等腰梯形,則只能BD=CO,且BC≠DO
∵點D為直線l:y=x上的一點
∴設D(x,x),則可得:
(3-x)2+(0-x)2
=
(2-0)2+(-1-0)2

解得:x1=1,x2=2經(jīng)檢驗,x1=1,x2=2都是方程①的根
∴D(1,1)或D(2,2)
但當取D(1,1)時,四邊形CBDO為平行四邊形,不合題意,舍去
若四邊形CBOD為等腰梯形,則只能BO=CD,且BC≠DO
同理可得:D(-1,-1)或D(2,2)
但當取D(-1,-1)時,四邊形CBOD為平行四邊形,不合題意,舍去
故所求的點D的坐標為(2,2).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
(1)求點A、E的坐標;
(2)若y=-
6
3
7
x2+bx+c過點A、E,求拋物線的解析式;
(3)連接PB、PD,設L為△PBD的周長,當L取最小值時,求點P的坐標及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=
1
2
x2-mx+2m-
7
2

(1)試說明:無論m為何實數(shù),該拋物線與x軸總有兩個不同的交點.
(2)如圖,當拋物線的對稱軸為直線x=3時,拋物線的頂點為點C,直線y=x-1與拋物線交于A、B兩點,并與它的對稱軸交于點D.
①拋物線上是否存在一點P使得四邊形ACPD是正方形?若存在,求出點P的坐標;若不存在,說明理由;
②平移直線CD,交直線AB于點M,交拋物線于點N,通過怎樣的平移能使得以C、D、M、N為頂點的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過坐標原點O及A(-2
3
,0),其頂點為B(m,3),C是AB中點,點E是直線OC上的一個動點(點E與點O不重合),點D在y軸上,且EO=ED.
(1)求此拋物線及直線OC的解析式;
(2)當點E運動到拋物線上時,求BD的長;
(3)連接AD,當點E運動到何處時,△AED的面積為
3
3
4
?請直接寫出此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,半徑分別為3
3
3
的⊙O1和⊙O2外切于原點O,在x軸上方的兩圓的外公切線AB與⊙O1和⊙O2分別切于點A、B,直線AB交y軸于點C.O2D⊥O1A于點D.
(1)求∠O1O2D的度數(shù);
(2)求點C的坐標;
(3)求經(jīng)過O1、C、O2三點的拋物線的解析式;
(4)在拋物線上是否存在點P,使△PO1O2為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知⊙P的半徑為3,圓心P在拋物線y=
1
2
x2上運動,當⊙P與x軸相切時,圓心P的坐標為(  )
A.(
6
,3)
B.(
3
,3)
C.(
6
,3)或(-
6
,3)
D.(
3
,3)或(-
3
,3)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點C是半圓O的半徑OB上的動點,作PC⊥AB于C.點D是半圓上位于PC左側(cè)的點,連接BD交線段PC于E,且PD=PE.
(1)求證:PD是⊙O的切線;
(2)若⊙O的半徑為4
3
,PC=8
3
,設OC=x,PD2=y.
①求y關于x的函數(shù)關系式;
②當x=
3
時,求tanB的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克.若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)若該專賣店銷售這種核桃要想平均每天獲利2240元,每千克核桃應降價多少元?
(2)在(1)問的條件下,平均每天獲利不變,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
(3)寫出每天總利潤y與降價x元的函數(shù)關系式,為了使每天的利潤最大,應降價多少元?

查看答案和解析>>

同步練習冊答案