如圖,直線x=2與反比例函數(shù)y= 和y=?的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是(      ).
先分別求出A、B兩點的坐標,得到AB的長度,再根據(jù)三角形的面積公式即可得出△PAB的面積.
解:∵把x=2分別代入y=、y=?,得y=1、y=-
∴A(2,1),B(2,-),
∴AB=1-(-)=
∵P為y軸上的任意一點,
∴點P到直線x=2的距離為2,
∴△PAB的面積=AB×2=AB=
故答案是:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標系xOy中,直線與x軸、y軸分別交于點A、B,點C在線段AB上,且
(1)求點C的坐標(用含有m的代數(shù)式表示);
(2)將△AOC沿x軸翻折,當(dāng)點C的對應(yīng)點C′恰好落在拋物線上時,求該拋物線的表達式;
(3)設(shè)點M為(2)中所求拋物線上一點,當(dāng)以A、O、C、M為頂點的四邊形為平行四邊形時,請直接寫出所有滿足條件的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A(1,0),B(4,0),M(5,3).動點P從點A出發(fā),沿x軸以每秒1個單位長的速度向右移動,且過點P的直線l:y=-x+b也隨之移動.設(shè)移動時間為t秒.

(1)當(dāng)t=1時,求l的解析式;
(2)若l與線段BM有公共點,確定t的取值范圍;
(3)直接寫出t為何值時,點M關(guān)于l的對稱點落在y軸上.如不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某蔬菜經(jīng)銷商到蔬菜種植基地采購一種蔬菜,經(jīng)銷商一次性采購蔬菜的采購單價y(元/千克)與采購量x(千克)之間的函數(shù)關(guān)系圖象如圖中折線AB——BC——CD所示(不包括端點A).

(1)當(dāng)100<x<200時,直接寫y與x之間的函數(shù)關(guān)系式.
(2)蔬菜的種植成本為2元/千克,某經(jīng)銷商一次性采購蔬菜的采購量不超過200千克,當(dāng)采購量是多少時,蔬菜種植基地獲利最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)min{x,y}表示x,y兩個數(shù)中的最小值,例如min{0,2}=0,min{12,8}=8,則關(guān)于x的函數(shù)y=min{2x,x+2}可以表示為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,直線l經(jīng)過原點O,且與x軸正半軸的夾角為30°,點M在x軸上,⊙M半徑為2,⊙M與直線l相交于A,B兩點,若△ABM為等腰直角三角形,則點M的坐標為                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:直線y=為正整數(shù))與兩坐標軸圍成的三角形面積為,則         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知反比例函數(shù)y1 (k1>0)與一次函數(shù)y2=k2x+1(k2≠0)相交于A、B兩點,AC⊥x軸于點C.若△OAC的面積為1,且tan∠AOC=2.

(1)求出反比例函數(shù)與一次函數(shù)的解析式;
(2)請直接寫出B點的坐標,并指出當(dāng)x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一農(nóng)民帶了若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售, 售出土豆千克數(shù)與他手中持有的錢(含備用零錢)的關(guān)系如圖所示,結(jié)合圖象回答下列問題:

(1) 農(nóng)民自帶的零錢是多少?
(2) 降價前他每千克土豆出售的價格是多少?
(3) 降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢) 是26元,問他一共帶了多少千克土豆.

查看答案和解析>>

同步練習(xí)冊答案