【題目】甲、乙兩人周末從同一地點(diǎn)出發(fā)去某景點(diǎn),因乙臨時(shí)有事,甲坐地鐵先出發(fā),甲出發(fā)0.2小時(shí)后乙開汽車前往.設(shè)甲行駛的時(shí)間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km).如圖①是y1與y2關(guān)于x的函數(shù)圖象.
(1)分別求線段OA與線段BC所表示的y1與y2關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)x為多少時(shí),兩人相距6km?
(3)設(shè)兩人相距S千米,在圖②所給的直角坐標(biāo)系中畫出S關(guān)于x的函數(shù)圖象.
【答案】(1)線段OA的函數(shù)表達(dá)式為y1=60x(0≤x≤1.2).線段BC的函數(shù)表達(dá)式為y2=80x﹣16(0.2≤x≤1.1).(2)x為0.5或1.1時(shí),兩人相距6km.(3)圖象見解析.
【解析】試題分析:(1)根據(jù)待定系數(shù)法可求線段OA與線段BC所表示的y1與y2關(guān)于x的函數(shù)表達(dá)式;
(2)分3種情況:①0<x<0.2;②甲、乙兩人相遇前;③甲、乙兩人相遇后;進(jìn)行討論可求x的值;
(3)分4種情況:①0<x<0.2;②甲、乙兩人相遇前;③甲、乙兩人相遇后乙到達(dá)景點(diǎn)前;④甲、乙兩人相遇后乙到達(dá)景點(diǎn)后;進(jìn)行討論可畫出S關(guān)于x的函數(shù)圖象.
【解答】解:(1)設(shè)OA:y1=k1x,BC:y2=k2x+b,
則y1=k1x過點(diǎn)(1.2,72),
所以y1=60x,
∵y2=k2x+b過點(diǎn)(0.2,0)、(1.1,72),
∴
解得.
∴y2=80x-16.
(2)①60x=6,
解得x=0.1;
②60x-(80x-16)=6,
解得x=0.5;
③80x-16-60x=6,
解得x=1.1.
故當(dāng)x為0.1或0.5或1.1小時(shí),兩人相距6千米.
(3)如圖所示:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E是邊CD上一點(diǎn)(點(diǎn)E不與點(diǎn)C、D重合),連結(jié)BE.
(感知)如圖①,過點(diǎn)A作AF⊥BE交BC于點(diǎn)F.易證△ABF≌△BCE.(不需要證明)
(探究)如圖②,取BE的中點(diǎn)M,過點(diǎn)M作FG⊥BE交BC于點(diǎn)F,交AD于點(diǎn)G.
(1)求證:BE=FG.
(2)連結(jié)CM,若CM=1,則FG的長為 .
(應(yīng)用)如圖③,取BE的中點(diǎn)M,連結(jié)CM.過點(diǎn)C作CG⊥BE交AD于點(diǎn)G,連結(jié)EG、MG.若CM=3,則四邊形GMCE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,∠1+∠2=230°,b∥c,則∠1,∠2,∠3,∠4各是多少度?
解:∵∠1=∠2(__________________),
∠1+∠2=230°,
∴∠1=∠2=___________(填度數(shù)).
∵b∥c,
∴∠4=∠2=_______(填度數(shù))(_______________________________),
∠2+∠3=180°(________________________________),
∴∠3=180°-∠2=____________(填度數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師從咸寧出發(fā)到外地參加教育信息化應(yīng)用技術(shù)提高培訓(xùn),他可以乘坐普通列車,也可以乘坐高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍.若高鐵的平均速度(千米/小時(shí))是普通列車平均速度的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間少3小時(shí),求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
已知:如圖1,,.求證:.
老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小穎首先完成了對(duì)這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是 .
(2)接下來,小穎用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線,然后在平行線間畫了一點(diǎn),連接后,用鼠標(biāo)拖動(dòng)點(diǎn),分別得到了圖2,3,4,小穎發(fā)現(xiàn)圖3正是上面題目的原型,于是她由上題的結(jié)論猜想到圖2和4中的、與之間也可能存在著某種數(shù)量關(guān)系.于是她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請(qǐng)你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
①猜想圖2中、與之間的數(shù)量關(guān)系并加以證明;
②補(bǔ)全圖4,直接寫出、與之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點(diǎn)P1,P2,P3,……P2005在反比例函數(shù)圖象上,它們的橫坐標(biāo)分別是x1,x2,x3,x2005縱坐標(biāo)分別為1,3,5,……;
共2005個(gè)連續(xù)奇數(shù),過點(diǎn)P1,P2,P3,……,P2005分別作軸的平行線,與的圖象交點(diǎn)依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2005(x2005,y2005),則_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準(zhǔn)備用她們所學(xué)的知識(shí)測(cè)算南塔的高度.如圖,小芳站在A處測(cè)得她看塔頂?shù)难鼋?/span>α為45°,小麗站在B處(A、B與塔的軸心共線)測(cè)得她看塔頂?shù)难鼋?/span>β為30°.她們又測(cè)出A、B兩點(diǎn)的距離為30米.假設(shè)她們的眼睛離頭頂都為10cm,則可計(jì)算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù): ≈1.414, ≈1.732)( )
A. 36.21米 B. 37.71米 C. 40.98米 D. 42.48米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與y軸交于點(diǎn),對(duì)稱軸為直線,點(diǎn)D為拋物線的頂點(diǎn).
求拋物線解析式和頂點(diǎn)D的坐標(biāo);
求拋物線與x軸的兩交點(diǎn)A、B的坐標(biāo);
你可以直接寫出不等式的解集嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com