【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

古希臘的幾何學(xué)家海倫在他的著作《度量論》一書中給出了利用三角形三邊之長求面積的公式﹣﹣﹣﹣海倫公式S(其中a,b,c是三角形的三邊長,,S為三角形的面積),并給出了證明

例如:在△ABC中,a3,b4c5,那么它的面積可以這樣計(jì)算:

a3b4,c5

6

S6

事實(shí)上,對(duì)于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.

根據(jù)上述材料,解答下列問題:

如圖,在△ABC中,BC7AC8,AB9

1)用海倫公式求△ABC的面積;

2)如圖,AD、BE為△ABC的兩條角平分線,它們的交點(diǎn)為I,求△ABI的面積.

【答案】1;(2.

【解析】

1)按照材料給出的公式,將數(shù)值代入即可求出面積;

2)過點(diǎn)IIFABIGAC、IHBC,垂足分別為點(diǎn)F、G、H,利用角平分線的性質(zhì)可知IFIHIG,利用第(1)問中求出的面積求出IF,最后利用三角形面積公式求△ABI的面積即可.

解:(1)∵BC7,AC8,AB9,

答:△ABC面積是;

2)如圖,過點(diǎn)IIFAB、IGACIHBC,垂足分別為點(diǎn)F、GH,

ADBE分別為△ABC的角平分線,

IFIHIG,

SABCSABI+SACI+SBCI,

9IF+8IF+7IF)=

解得IF

SABIABFI×9×

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)用“>”、“<”、“≤”、“≥”或“=”填空,并探究規(guī)律:

14+5   2

23+   2

31+   2

4a+1   2a0).

(發(fā)現(xiàn))用一句話概括你發(fā)現(xiàn)的規(guī)律:   ;

(表達(dá))用符號(hào)語言寫出你發(fā)現(xiàn)的規(guī)律并加以證明;

(應(yīng)用)若a0,求a+的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師要求在一個(gè)已知的中,利用尺規(guī)作出一個(gè)菱形.

1)小明的作法如下:如圖1,連接,作的垂直平分線分別交,于點(diǎn),,連接,.請(qǐng)你判斷小明的作法是否正確;若正確,說明理由;若不正確,請(qǐng)你作出符合條件的菱形;

2)小亮的作法:如圖2,分別作的平分線,,分別交,于點(diǎn),,連接,則四邊形是菱形.請(qǐng)你直接判斷小亮的作法是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的切線,連接E,過點(diǎn)AF,交D,連接,

1)求證:

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AD為直徑的半圓O經(jīng)過RtABC斜邊AB的兩個(gè)端點(diǎn),交直角邊AC于點(diǎn)EB、E是半圓弧的三等分點(diǎn),的長為,則圖中陰影部分的面積為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市促銷活動(dòng),將A,B,C三種水果采用甲、乙、丙三種方式搭配裝進(jìn)禮盒進(jìn)行銷售.每盒的總成本為盒中A,B,C三種水果成本之和,盒子成本忽略不計(jì).甲種方式每盒分別裝AB,C三種水果6kg,3kg,1kg;乙種方式每盒分別裝A,B,C三種水果2kg,6kg,2kg.甲每盒的總成本是每千克A水果成本的12.5倍,每盒甲的銷售利潤率為20%;每盒甲比每盒乙的售價(jià)低25%;每盒丙在成本上提高40%標(biāo)價(jià)后打八折出售,獲利為每千克A水果成本的1.2倍.當(dāng)銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為225時(shí),則銷售總利潤率為_____.(利潤率=利潤÷成本×100%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,∠B60°,BC2.將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到ABC,連接AB,且A,B,A在同一條直線上,則AA_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到ABCMBC的中點(diǎn),PAB的中點(diǎn),連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案