已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)P在OM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( )

A.
B.
C.
D.
【答案】分析:此題運(yùn)用圓錐的性質(zhì),同時此題為數(shù)學(xué)知識的應(yīng)用,由題意蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時所爬過的最短,就用到兩點(diǎn)間線段最短定理.
解答:解:蝸牛繞圓錐側(cè)面爬行的最短路線應(yīng)該是一條線段,因此選項A和B錯誤,又因?yàn)槲伵膒點(diǎn)出發(fā),繞圓錐側(cè)面爬行后,又回到起始點(diǎn)P處,那么如果將選項C、D的圓錐側(cè)面展開圖還原成圓錐后,位于母線OM上的點(diǎn)P應(yīng)該能夠與母線OM′上的點(diǎn)(P′)重合,而選項C還原后兩個點(diǎn)不能夠重合.
故選D.
點(diǎn)評:本題考核立意相對較新,考核了學(xué)生的空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)P在OM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知O為圓錐的頂點(diǎn),MN為圓錐底面的直徑,一只蝸牛從M點(diǎn)出發(fā),繞圓錐側(cè)面爬行到N點(diǎn)時,所爬過的最短路線的痕跡(虛線)在側(cè)面展開圖中的位置是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市某校九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)P在OM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省廊坊市安次區(qū)九年級網(wǎng)絡(luò)試卷設(shè)計大賽數(shù)學(xué)試卷(2)(解析版) 題型:選擇題

(2010•瀘州)已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)P在OM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案