【題目】1)如圖,已知△ABC中,AB=2BC=4.畫出△ABC的高ADCE并求出的值.

2)在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為,點B坐標(biāo)為滿足

①若沒有平方根,判斷點A在第幾象限并說明理由;

②若點A軸的距離是點B軸距離的3倍,求點B的坐標(biāo).

【答案】1)作圖見詳解,;(2)①A在第二象限,3,1)或(6,﹣2).

【解析】

1)利用鈍角三角形邊上的高線作法,延長各邊作出即可;利用三角形面積求法公式得出即可.

2)①根據(jù)平方根的意義得到a0,然后根據(jù)各象限點的坐標(biāo)特征可判斷點A在第二象限;②先利用方程組,用a表示bcba,c4a,則B點坐標(biāo)為(a,4a),再利用點Ax軸的距離是點Bx軸距離的3倍得到|a|3|4a|,則a34a)或a=﹣34a),分別解方程求出a的值,然后計算出c的值,于是可寫出B點坐標(biāo).

解:(1)如圖所示,AD、CE即為所求:

SABC×AD×BCAB×CE,

2A在第二象限,

理由:∵a沒有平方根

a0、﹣a0,

∴點A在第二象限;

解方程組

a表示b、c得:bac4a,

B點坐標(biāo)為(a4a),

∵點Ax軸的距離是點Bx軸距離的3倍,

|a|3|4a|

當(dāng)a34a),解得a3,則c431,此時B點坐標(biāo)為(3,1);

當(dāng)a=﹣34a),解得a6,則c46=﹣2,此時B點坐標(biāo)為(6,﹣2);

綜上所述,B點坐標(biāo)為(3,1)或(6,﹣2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點A的坐標(biāo)為(1,0),那么點B2018的坐標(biāo)為( 。

A. (1,1) B. (0, C. D. (﹣1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC10BC16.點D在邊BC上,且點D到邊AB和邊AC的距離相等.

1)用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡,在圖上標(biāo)注出點D);

2)求點D到邊AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中, ,以為直徑的邊于點,連接,過的垂線,交邊于點,交邊的延長線于點

1)求證:的切線;

2)若,,求劣弧的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家為了實現(xiàn)2020年全面脫貧目標(biāo),實施“精準(zhǔn)扶貧”戰(zhàn)略,采取異地搬遷,產(chǎn)業(yè)扶持等措施.使貧困戶的生活條件得到改善,生活質(zhì)量明顯提高.某旗縣為了全面了解貧困縣對扶貧工作的滿意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計圖(不完整).

根據(jù)以上信息,解答下列問題:

(1)將圖1補(bǔ)充完整;

(2)通過分析,貧困戶對扶貧工作的滿意度(A、B、C類視為滿意)是  

(3)市扶貧辦從該旗縣甲鄉(xiāng)鎮(zhèn)3戶、乙鄉(xiāng)鎮(zhèn)2戶共5戶貧困戶中,隨機(jī)抽取兩戶進(jìn)行滿意度回訪,求這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點,點A(﹣1,0),點B(0,).

(1)求BAO的度數(shù);

(2)如圖1,將AOB繞點O順時針得A′OB′,當(dāng)A′恰好落在AB邊上時,設(shè)AB′O的面積為S1,BA′O的面積為S2,S1與S2有何關(guān)系?為什么?

(3)若將AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y2mx2+5mx12mm為參數(shù),且m0)的圖象與x軸交于點AB,與y軸交于點C,點A的坐標(biāo)為(﹣4,0).

1)求直線AC的解析式(用含m的式子表示).

2)若m=﹣,連接BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說明理由.

3)在(2)的條件下,設(shè)點MAC上方的拋物線上一動點(與點A,C不重合),以M為圓心的圓與直線AC相切,求⊙M面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,∠C=90°,AC=3,BC=4,OBC的中點,到點O的距離等于BC的所有點組成的圖形記為G,圖形GAB交于點D

1)補(bǔ)全圖形并求線段AD的長;

2)點E是線段AC上的一點,當(dāng)點E在什么位置時,直線ED 圖形G有且只有一個交點?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖像如圖所示,其對稱軸為,與軸負(fù)半軸的交點為 ,則下列結(jié)論正確的是( )

A.B.一元二次方程無實根

C.D.

查看答案和解析>>

同步練習(xí)冊答案