下列方程是關(guān)于x的一元二次方程的是( )
A.a(chǎn)x2+bx+c=0
B.a(chǎn)x2-ax+1=0
C.mx2-4=0
D.(k2+1)x2-2x+k=0
【答案】分析:根據(jù)一元二次方程的定義作答,注意一元二次方程必須滿(mǎn)足四個(gè)條件一元二次方程必須滿(mǎn)足四個(gè)條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項(xiàng)系數(shù)不為0;(3)是整式方程;(4)含有一個(gè)未知數(shù).
由這四個(gè)條件對(duì)四個(gè)選項(xiàng)進(jìn)行驗(yàn)證,滿(mǎn)足這四個(gè)條件者為正確答案.
解答:解:A、ax2+bx+c=0,應(yīng)該注明a≠0,故不符合題意;
B、ax2-ax+1=0,應(yīng)該注明a≠0,故不符合題意;
C、mx2-4=0,應(yīng)該注明m≠0,故不符合題意;
D、(k2+1)x2-2x+k=0符合一元二次方程的定義,符合題意.故選D.
點(diǎn)評(píng):一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過(guò)程中容易忽視的知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a、b、c滿(mǎn)足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=
3
2
,b=
3
2
.a(chǎn)=b=
3
2
,c=-1.
以上解法1是構(gòu)造一元二次方程解決問(wèn)題.若兩實(shí)數(shù)x、y滿(mǎn)足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問(wèn)題.若實(shí)數(shù)x、y滿(mǎn)足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t.一些問(wèn)題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問(wèn)題順利解決.
下面給出兩個(gè)問(wèn)題,解答其中任意一題:
(1)用另一種方法解答范例中的問(wèn)題.
(2)選用范例中的一種方法解答下列問(wèn)題:
已知實(shí)數(shù)a、b、c滿(mǎn)足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究發(fā)現(xiàn):
解下列方程,將得到的解填入下面的表格中,觀察表格中兩個(gè)解的和與積,它們和原來(lái)的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1•x2
(1)
(2)
(3)
(1)請(qǐng)用文字語(yǔ)言概括你的發(fā)現(xiàn).
(2)一般的,對(duì)于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=
-p
-p
,x1•x2
q
q

(3)運(yùn)用以上發(fā)現(xiàn),解決下面的問(wèn)題:
①已知一元二次方程x2-2x-7=0的兩個(gè)根為x1,x2,則x1+x2的值為
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:013

下列說(shuō)法正確的是

[  ]

A.方程是關(guān)于x的一元二次方程

B.方程的常數(shù)項(xiàng)是4

C.若一元二次方程的常數(shù)項(xiàng)為0,則0必是它的一個(gè)根

D.當(dāng)一次項(xiàng)系數(shù)為0時(shí),一元二次方程總有非零解

查看答案和解析>>

同步練習(xí)冊(cè)答案