如圖,正方形ABCD的邊長為4cm,動點P、Q同時從點A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點C運動,設(shè)運動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關(guān)系可以用圖象表示為( )

A.
B.
C.
D.
【答案】分析:根據(jù)題意結(jié)合圖形,分①0≤x≤4時,根據(jù)四邊形PBDQ的面積=△ABD的面積-△APQ的面積,列出函數(shù)關(guān)系式,從而得到函數(shù)圖象,②4≤x≤8時,根據(jù)四邊形PBDQ的面積=△BCD的面積-△CPQ的面積,列出函數(shù)關(guān)系式,從而得到函數(shù)圖象,再結(jié)合四個選項即可得解.
解答:解:①0≤x≤4時,
∵正方形的邊長為4cm,
∴y=S△ABD-S△APQ,
=×4×4-•x•x,
=-x2+8,
②4≤x≤8時,
y=S△BCD-S△CPQ,
=×4×4-•(8-x)•(8-x),
=-(8-x)2+8,
所以,y與x之間的函數(shù)關(guān)系可以用兩段二次函數(shù)圖象表示,縱觀各選項,只有B選項圖象符合.
故選B.
點評:本題考查了動點問題的函數(shù)圖象,根據(jù)題意,分別求出兩個時間段的函數(shù)關(guān)系式是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案