如圖,拋物線與x軸交于A(1,0),B(-3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求此拋物線的解析式;
(2)在x軸上找一點(diǎn)D,使得以點(diǎn)A、C、D為頂點(diǎn)的三角形是直角三角形,求點(diǎn)D的坐標(biāo).

【答案】分析:(1)由條件拋物線經(jīng)過A(1,0),B(-3,0)和C(0,3).由待定系數(shù)法就可以直接求出拋物線的解析式.
(2)由條件可以知道∠CAD不可能為直角,從∠ADC和∠ACD′是直角來討論可以求出點(diǎn)D的坐標(biāo).
解答:解;(1)設(shè)拋物線的解析式為y=a(x-1)(x+3),由題意,得
3=-3a,
∴a=-1,
∴拋物線的解析式為:y=-(x-1)(x+3),即y=-x2+2x+3.

(2)∵點(diǎn)D在x軸上,
∴在Rt△ACD中,∠CAD不可能為直角.
當(dāng)∠ADC=90°時(shí),D點(diǎn)與O點(diǎn)重合,
∴D(0,0),
當(dāng)∠ACD′=90°時(shí),
∴∠D′CO+∠ACO=90°.
∵∠ACO+∠OAC=90°,
∴∠D′CO=∠OAC,
∴△D′CO∽△CAO,
,
,
∴D′O=9,
∴D′(-9,0).
綜上所述,D點(diǎn)的坐標(biāo)為:(0,0)或(-9,0)

點(diǎn)評(píng):本題考查了待定系數(shù)法求拋物線的解析式,直角三角形的性質(zhì),相似三角形的判定及性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個(gè)根.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對稱軸上的任意一點(diǎn),則△AMC的周長最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與y軸交于點(diǎn)A(0,4),與x軸交于B、C兩點(diǎn).其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點(diǎn)D,使△BCD為直角三角形.若存在,求所有D點(diǎn)坐標(biāo);反之說理;
(3)點(diǎn)P為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(A點(diǎn)除外),連PA、PC,若設(shè)△PAC的面積為S,P點(diǎn)橫坐標(biāo)為t,則S在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)P有且只有1個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點(diǎn),且對稱軸為直線x=2,與y軸交于點(diǎn)C(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對稱軸上的一個(gè)動(dòng)點(diǎn),連接MA、MC,當(dāng)△MAC的周長最小時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案