【題目】如圖,蘭蘭站在河岸上的G點,看見河里有一只小船沿垂直于岸邊的方向劃過來,此時,測得小船C的俯角是∠FDC=30°,若蘭蘭的眼睛與地面的距離是1.5米,BG=1米,BG平行于AC所在的直線,迎水坡的坡度i=4:3,坡長AB=10米,求小船C到岸邊的距離CA的長?(參考數(shù)據(jù):=1.73,結(jié)果保留兩位有效數(shù)字)
【答案】CA的長約是9.4米.
【解析】
試題分析:把AB和CD都整理為直角三角形的斜邊,利用坡度和勾股定理易得點B和點D到水面的距離,進而利用俯角的正切值可求得CH長度.CH-AE=EH即為AC長度.
試題解析:過點B作BE⊥AC于點E,延長DG交CA于點H,得Rt△ABE和矩形BEHG.
i=,AB=10,
∴BE=8,AE=6.
∵DG=1.5,BG=1,
∴DH=DG+GH=1.5+8=9.5,
AH=AE+EH=6+1=7.
在Rt△CDH中,
∵∠C=∠FDC=30°,DH=9.5,tan30°=,
∴CH=9.5.
又∵CH=CA+7,
即9.5=CA+7,
∴CA≈9.435≈9.4(米).
答:CA的長約是9.4米.
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知:如圖1,在△ABC中,∠ABC的平分線與∠ACB的平分線交于點O,求證:∠BOC=90°+∠A;
(2)如圖2,在△ABC中,BP,CP分別是△ABC的外角∠DBC和∠ECB的平分線,試探究∠BPC與∠A的關系.
(3)如圖3,在△ABC中,CE平分∠ACB,BE是△ABC的外角∠ABD的平分線,試探究∠BEC與∠A的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整數(shù)部分,求a+2b+c的值.
(2)有四個實數(shù)分別為32,,,.
①請你計算其中有理數(shù)的和.
②若x﹣2是①中的和的平方,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點P是射線AM上一動點(不與點A重合).BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(發(fā)現(xiàn))
(1)∵AM∥BN,∴∠ACB=_______;(填相等的角)
(2)求∠ABN、∠CBD的度數(shù);
解:∵AM∥BN,
∴∠ABN+∠A=180°,
∵∠A=60°,
∴∠ABN=∠ABP+∠PBN=______,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=______,
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=______.
(操作)
(3)當點P運動時,∠APB與∠ADB之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),在某年某月的日歷中,任意圈出一豎列相鄰的三個數(shù),設中間的一個數(shù)為,則用含的代數(shù)式表示這三個數(shù)分別是__________;(按從小到大的順序?qū)懺跈M線上)
(2)現(xiàn)將連續(xù)自然數(shù)1~2007按圖(2)的方式排成一個長方形陣形然后用一個正方形框出16個數(shù).
①圖中框出的這16個數(shù)的和是__________;
②在圖(2)中,要使一個正方形框出的16個數(shù)的和等于2016,2168,是否可能?若不可能,請說明理由;若有可能,請求出該正方形框出的16個數(shù)中的最小數(shù)和最大數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個黑球的概率是,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E.
(1)求證:①△ADC≌△CEB;②DE=AD+BE.
(2)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,DE、AD、BE又怎樣的關系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com