【題目】如圖,在□ABCD的形外分別作等腰直角ABF和等腰直角ADE,FAB=EAD=90°,

連結(jié)AC、EF.在圖中找一個與FAE全等的三角形,并加以證明.

【答案】FAE≌△ABC或CDA,證明見解析.

【解析】

試題分析:∵∠BAD+EAF+FAB+EAD=360°,FAB=EAD=90°,∴∠BAD+EAF=180°四邊形ABCD為平行四邊形,∴∠BAD+ABC=180°,∴∠EAF=ABC(同角的補角相等)∵△ABF和ADE都是等腰直角三角形,AF=AB,AE=AD又□ABCD中AD=BC(平行四邊形的性質(zhì))AE=BC

FAE和ABC中AF=AB,EAF=ABC,AE=BC,∴△FAE≌△ABC,又四邊形ABCD為平行四邊形CDA≌△ABC∴△FAE≌△CDA

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】低碳生活,綠色出行是我們倡導的一種生活方式,有關部門隨機調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖,根據(jù)統(tǒng)計圖,完成下列問題:

1)調(diào)查的總?cè)藬?shù)為   

2)補全條形統(tǒng)計圖;

3)該單位共有2000人,為了積極踐行低碳生活,綠色出行這種生活方式,調(diào)查后開私家車的人上下班全部改為騎自行車,則現(xiàn)在騎自行車的人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).
(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P為;
(2)該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1 , 利用列表法或樹狀圖加以說明;
(3)該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?(   )

A. AB∥CD,AD=BC B. AB=CD,AD=BC

C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF;EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DBC的中點,點E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:

①BE⊥EC;②BF∥CE③AB=AC;

從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是 (只填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AD平分∠BACADBC,垂足為DAN△ABC外角∠CAM的平分線,CEAN,垂足為E.

(1)求證:四邊形ADCE是矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)正整數(shù)按圖中的規(guī)律排列,請寫出第18,20列的數(shù)字:_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,點E,F分別在ABAC上,AE=AF,BFCE相交于點P.求證:PB=PC,并直接寫出圖中其他相等的線段.

查看答案和解析>>

同步練習冊答案