已知:一元二次方程x2+kx+k﹣=0.
(1)求證:不論k為何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根;
(2)設(shè)k<0,當(dāng)二次函數(shù)y=x2+kx+k﹣的圖象與x軸的兩個(gè)交點(diǎn)A、B間的距離為4時(shí),求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點(diǎn)為C,過(guò)y軸上一點(diǎn)M(0,m)作y軸的垂線l,當(dāng)m為何值時(shí),直線l與△ABC的外接圓有公共點(diǎn)?
考點(diǎn):
二次函數(shù)綜合題.
分析:
(1)根據(jù)一元二次方程的根的判別式△=b2﹣4ac的符號(hào)來(lái)判定已知方程的根的情況;
(2)利用根與系數(shù)的關(guān)系(|xA﹣xB|==4)列出關(guān)于k的方程,通過(guò)解方程來(lái)求k的值;
(3)根據(jù)直線與圓的位置的位置關(guān)系確定m的取值范圍.
解答:
(1)證明:∵△=k2﹣4××(k﹣)=k2﹣2k+1=(k﹣1)2≥0,
∴關(guān)于x的一元二次方程x2+kx+k﹣=0,不論k為何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根;
(2)令y=0,則x2+kx+k﹣=0.
∵xA+xB=﹣2k,xA•xB=2k﹣1,
∴|xA﹣xB|===2|k﹣1|=4,即|k﹣1|=2,
解得k=3(不合題意,舍去),或k=﹣1.
∴此二次函數(shù)的解析式是y=x2﹣x﹣;
(3)由(2)知,拋物線的解析式是y=x2﹣x﹣.
易求A(﹣1,0),B(3,0),C(1,﹣2),
∴AB=4,AC=2,BC=2.
顯然AC2+BC2=AB2,得△ABC是等腰直角三角形.AB為斜邊,
∴外接圓的直徑為AB=4,
∴﹣2≤m≤2.
點(diǎn)評(píng):
本題綜合考查了二次函數(shù)綜合題,其中涉及到的知識(shí)點(diǎn)有:拋物線與x軸的交點(diǎn),待定系數(shù)法求二次函數(shù)的解析式以及直線與圓的關(guān)系,范圍較廣,難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、k=
| ||
B、k=-
| ||
C、k=1 | ||
D、k=-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2n+1 |
1 |
2n+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com