(2012•臨沂)如圖,點(diǎn)A在x軸上,OA=4,將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°至OB的位置.
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)點(diǎn)A、O、B的拋物線的解析式;
(3)在此拋物線的對(duì)稱(chēng)軸上,是否存在點(diǎn)P,使得以點(diǎn)P、O、B為頂點(diǎn)的三角形是等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
分析:(1)首先根據(jù)OA的旋轉(zhuǎn)條件確定B點(diǎn)位置,然后過(guò)B做x軸的垂線,通過(guò)構(gòu)建直角三角形和OB的長(zhǎng)(即OA長(zhǎng))確定B點(diǎn)的坐標(biāo).
(2)已知O、A、B三點(diǎn)坐標(biāo),利用待定系數(shù)法求出拋物線的解析式.
(3)根據(jù)(2)的拋物線解析式,可得到拋物線的對(duì)稱(chēng)軸,然后先設(shè)出P點(diǎn)的坐標(biāo),而O、B坐標(biāo)已知,可先表示出△OPB三邊的邊長(zhǎng)表達(dá)式,然后分①OP=OB、②OP=BP、③OB=BP三種情況分類(lèi)討論,然后分辨是否存在符合條件的P點(diǎn).
解答:解:(1)如圖,過(guò)B點(diǎn)作BC⊥x軸,垂足為C,則∠BCO=90°,
∵∠AOB=120°,
∴∠BOC=60°,
又∵OA=OB=4,
∴OC=
1
2
OB=
1
2
×4=2,BC=OB•sin60°=4×
3
2
=2
3

∴點(diǎn)B的坐標(biāo)為(-2,-2
3
);

(2)∵拋物線過(guò)原點(diǎn)O和點(diǎn)A、B,
∴可設(shè)拋物線解析式為y=ax2+bx,
將A(4,0),B(-2.-2
3
)代入,得
16a+4b=0
4a-2b=-2
3
,
解得
a=-
3
6
b=
2
3
3
,
∴此拋物線的解析式為y=-
3
6
x2+
2
3
3
x

(3)存在,
如圖,拋物線的對(duì)稱(chēng)軸是直線x=2,直線x=2與x軸的交點(diǎn)為D,設(shè)點(diǎn)P的坐標(biāo)為(2,y),
①若OB=OP,
則22+|y|2=42,
解得y=±2
3
,
當(dāng)y=2
3
時(shí),在Rt△POD中,∠PDO=90°,sin∠POD=
PD
OP
=
3
2
,
∴∠POD=60°,
∴∠POB=∠POD+∠AOB=60°+120°=180°,
即P、O、B三點(diǎn)在同一直線上,
∴y=2
3
不符合題意,舍去,
∴點(diǎn)P的坐標(biāo)為(2,-2
3

②若OB=PB,則42+|y+2
3
|2=42
解得y=-2
3
,
故點(diǎn)P的坐標(biāo)為(2,-2
3
),
③若OP=BP,則22+|y|2=42+|y+2
3
|2
解得y=-2
3
,
故點(diǎn)P的坐標(biāo)為(2,-2
3
),
綜上所述,符合條件的點(diǎn)P只有一個(gè),其坐標(biāo)為(2,-2
3
),
點(diǎn)評(píng):此題融合了函數(shù)解析式的確定、等腰三角形的判定等知識(shí),綜合程度較高,但屬于二次函數(shù)綜合題型中的常見(jiàn)考查形式,沒(méi)有經(jīng)過(guò)分類(lèi)討論而造成漏解是此類(lèi)題目中易錯(cuò)的地方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂)如圖,AB∥CD,DB⊥BC,∠1=40°,則∠2的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂)如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的側(cè)面積是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂)如圖,若點(diǎn)M是x軸正半軸上任意一點(diǎn),過(guò)點(diǎn)M作PQ∥y軸,分別交函數(shù)y=
k1
x
(x>0)和y=
k2
x
(x>0)的圖象于點(diǎn)P和Q,連接OP和OQ.則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂)如圖,AB是⊙O的直徑,點(diǎn)E為BC的中點(diǎn),AB=4,∠BED=120°,則圖中陰影部分的面積之和為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案