分析 ①根據(jù)直線x=-1是對稱軸,確定b-2a的值;
②根據(jù)x=-2時(shí),y>0確定4a-2b+c的符號;
③根據(jù)x=-4時(shí),y=0,比較a-b+c與-9a的大。
④根據(jù)拋物線的對稱性,得到x-4與x=2時(shí)的函數(shù)值相等判斷即可.
解答 解:①∵直線x=-1是對稱軸,
∴-$\frac{2a}$=-1,即b-2a=0,①正確;
②x=-2時(shí),y>0,
∴4a-2b+c>0,②錯(cuò)誤;
∵x=-4時(shí),y=0,
∴16a-4b+c=0,又b=2a,
∴a-b+c=-9a,③正確;
④根據(jù)拋物線的對稱性,得到x=-4與x=2時(shí)的函數(shù)值相等,
∴y1>0,y2<0,
∴y1>y2,④正確.
故答案為①③④.
點(diǎn)評 本題考查的是二次函數(shù)的圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3a+1}{4}$ | B. | $\frac{2-a}{5}$ | C. | $\frac{3a+1}{6}$ | D. | $\frac{5a-2}{7}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a-2(-b+c)=a-2b-2c | B. | a-2(-b+c)=a+2b-2c | C. | a+2(b-c)=a+2b-c | D. | a+2(b-c)=a+2b+2c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com