如圖:兩個(gè)觀察者從A,B兩地觀測(cè)空中C處一個(gè)氣球,分別測(cè)得仰角為45°和6精英家教網(wǎng)0°,已知A,B兩地相距200m,當(dāng)氣球沿著與AB平行地漂移40秒后到達(dá)C1,在A處測(cè)得氣球的仰角為30度.
求:(1)氣球漂移的平均速度(結(jié)果保留3個(gè)有效數(shù)字);
(2)在B處觀測(cè)點(diǎn)C1的仰角(精確到度).
分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及到兩個(gè)直角三角形,應(yīng)利用其公共邊構(gòu)造等量關(guān)系,進(jìn)而可求出答案.
解答:精英家教網(wǎng)解:(1)作CD⊥AB,C1E⊥AB,垂足分別為D、E,
在RT△ACD中,AD=CD÷tan∠CAD=CD÷tan45°=CD;
在RT△BCD中,BD=CD÷tan∠CBD=CD÷tan60°=
CD
3
;
又因?yàn)锳B=AD-BD=200,
所以CD-
CD
3
=200,
解之得CD=100(3+
3
),
又CD⊥AB,C1E⊥AB,CC1∥AB,
所以C1E=CD,DE=CC1
在RT△AEC1中,AE=C1E÷tan∠C1AE=100(3+
3
)÷tan30°=300(
3
+1
),
所以CC1=DE=AE-AD=300(
3
+1
)-100(3+
3
),
即CC1=200
3

速度為200
3
÷40≈8.66m/s;

(2)由(1)知BD=
CD
3
=100(1+
3
),
所以tan∠C1BE=
C1E
BE
=
300+100
3
300
3
+100
≈0.7637,
所以∠C1BE=37°,
即仰角為37°.
點(diǎn)評(píng):本題要求學(xué)生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•下城區(qū)二模)如圖,兩個(gè)觀察者從A,B兩地觀測(cè)空中C處一個(gè)氣球,分別測(cè)得仰角為45°和60°.已知A,B兩地相距30米,延長(zhǎng)AB,作CD⊥AD于D,當(dāng)氣球沿著與AB平行的方向飄移到點(diǎn)C′時(shí),在A處又測(cè)得氣球的仰角為30°,求CD與CC′的長(zhǎng)度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省杭州市下城區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,兩個(gè)觀察者從A,B兩地觀測(cè)空中C處一個(gè)氣球,分別測(cè)得仰角為45º和60º.已知A,B兩地相距30米,延長(zhǎng)AB,作CDADD,當(dāng)氣球沿著與AB平行的方向飄移到點(diǎn)時(shí),在A處又測(cè)得氣球的仰角為30º,求CD的長(zhǎng)度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省杭州市下城區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,兩個(gè)觀察者從A,B兩地觀測(cè)空中C處一個(gè)氣球,分別測(cè)得仰角為45º和60º.已知A,B兩地相距30米,延長(zhǎng)AB,作CDADD,當(dāng)氣球沿著與AB平行的方向飄移到點(diǎn)時(shí),在A處又測(cè)得氣球的仰角為30º,求CD的長(zhǎng)度.(結(jié)果保留根號(hào))

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,兩個(gè)觀察者從A,B兩地觀測(cè)空中C處一個(gè)氣球,分別測(cè)得仰角為45°和60°.已知A,B兩地相距30米,延長(zhǎng)AB,作CD⊥AD于D,當(dāng)氣球沿著與AB平行的方向飄移到點(diǎn)C′時(shí),在A處又測(cè)得氣球的仰角為30°,求CD與CC′的長(zhǎng)度.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案