如圖,△P1OA1,△P2A1A2,△P3A2A3,…,是等腰直角三角形,點P1,P2,P3,…,在反比列函數(shù)y=的圖象上,斜邊OA1,A1A2,A2A3,…都在x軸上,則點A2的坐標是   
【答案】分析:過點P1作P1M⊥x軸,由于△OAP1是等腰直角三角形,因而PA=OA,因而可以設(shè)P1點的坐標是(a,a),把(a,a)代入解析式即可求出a=2,因而求出P的坐標是(2,2),進一步得到OA1=4,再根據(jù)△P2A1A2是等腰直角三角形,設(shè)P2的縱坐標是b,因而橫坐標是b+4,把P2的坐標代入解析式y(tǒng)=,即可求出b,然后即可求出點B的坐標.
解答:解:如圖,過點P1作P1M⊥x軸于M,
∵△OAP1是等腰直角三角形,
∴P1M=OM,
∴設(shè)P1點的坐標是(a,a),
把(a,a)代入解析式得到a=2,
∴P1的坐標是(2,2),
則OA1=4,
∵△P2A1A2是等腰直角三角形,過點P2作P2N⊥x軸于N,
設(shè)P2的縱坐標是b,
∴橫坐標是b+4,
把P2的坐標代入解析式y(tǒng)=,
∴b+4=,
∴b=2-2,
∴點P2的橫坐標為2+2,
∴P2點的坐標是(2+2,2-2),
∴點A2的坐標是(4,0).
故答案為:(4,0).
點評:本題考查了反比例函數(shù)的圖象畫法和它的性質(zhì),利用形數(shù)結(jié)合解決此類問題,是非常有效的方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△P1OA1,△P2A1A2是等腰直角三角形,點P1,P2在函數(shù)y=
4x
(x>0)的圖象上,斜邊OA1,A1A2都在x軸上,則點A2的坐標是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△P1OA1、△P2A1A2是等腰直角三角形,點P1、P2在函數(shù)y=
4
x
(x>0)
的圖象上,斜邊OA1、A1A2都在x軸上,則點A2的坐標是(  )
A、(2
2
-2
,0)
B、(2
2
+2
,0)
C、(4
2
,0)
D、(2
2
,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△P1OA1,△P2A1A2,△P3A2A3,…,是等腰直角三角形,點P1,P2,P3,…,在反比列函數(shù)y=
4x
的圖象上,斜邊OA1,A1A2,A2A3,…都在x軸上,則點A2的坐標是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△P1OA1、△P2A1A2、△P3A2A3、…、△P100A99A100是等腰直角三角形,點P1、P2、P3、…、P100在反比列函數(shù)y=
4x
的圖象上,斜邊OA1、A1A2、A2A3、…、A99A100都在x軸上,則點A100的坐標是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△P1OA1、△P2A1A2是等腰直角三角形,點P1、P2在函數(shù)y=
4
x
(x>0)
的圖象上,斜邊OA1、A1A2都在x軸上,則O
A
2
2
等于( 。

查看答案和解析>>

同步練習冊答案