【題目】如圖,在ABC 中,ABAC,BO、CO 分別平分∠ABC、∠ACB,DE 經(jīng)過點 O DEBC,DE 分別交 ABAC D、E,則圖中等腰三角形的個數(shù)為( )

A.2B.3C.4D.5

【答案】D

【解析】

根據(jù)等腰三角形的判定定理,即可得到答案.

∵在ABC 中,ABAC,

ABC是等腰三角形,∠ABC=∠ACB,

DEBC,

∠ADE=ABC,∠AED=∠ACB,

∠ADE=AED

ADE是等腰三角形,

BO、CO 分別平分∠ABC、∠ACB,

∴∠OBC=∠ABC,∠OCB=∠ACB,

∴∠OBC=∠OCB,

OBC是等腰三角形,

DEBCBO、CO 分別平分∠ABC、∠ACB,

∴∠DBO=∠OBC=DOB,∠ECO=∠OCB=∠EOC,

DBOECO是等腰三角形,

∴圖中由5個等腰三角形,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品的成本是元,試銷階段每件商品的售價(元)與產(chǎn)品的銷售量(件)滿足當(dāng)時,,當(dāng)時,,且的一次函數(shù),為了獲得最大利潤(元),每件產(chǎn)品的銷售價應(yīng)定為(

A. 160 B. 180 C. 140 D. 200

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1.

c>0;2a﹣b=0;<0;④若點B(﹣,y1),C(﹣,y2)為函數(shù)圖象上的兩點,則y1>y2;四個結(jié)論中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BC,AB=8,BC=6,點DAB的中點,點P在線段BC上以每秒2個單位的速度由點B向點C運(yùn)動,同時點Q在線段CA上以每秒a個單位的速度由點C向點A運(yùn)動,設(shè)運(yùn)動時間為t(秒)(0≤t≤3).

(1)用含t的代數(shù)式表示線段PC的長;

(2)若點P、Q的運(yùn)動速度相等,t=1時,BPDCQP是否全等,請說明理由.

(3)若點P、Q的運(yùn)動速度不相等,BPDCQP全等時,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)經(jīng)銷商計劃同時購進(jìn)一批甲、乙兩種型號的手機(jī),若購進(jìn)2部甲型號手機(jī)和1部乙型號手機(jī),共需要資金2800元;若購進(jìn)3部甲型號手機(jī)和2部乙型號手機(jī),共需要資金4600

(1) 求甲、乙型號手機(jī)每部進(jìn)價為多少元?

(2) 該店計劃購進(jìn)甲、乙兩種型號的手機(jī)銷售,預(yù)計用不多于1.8萬元且不少于1.74萬元的資金購進(jìn)這兩部手機(jī)共20臺,請問有幾種進(jìn)貨方案?請寫出進(jìn)貨方案

(3) 售出一部甲種型號手機(jī),利潤率為40%,乙型號手機(jī)的售價為1280為了促銷,公司決定每售出一臺乙型號手機(jī),返還顧客現(xiàn)金m元,而甲型號手機(jī)售價不變,要使(2)中所有方案獲利相同,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】茂林貨棧打算在年前用 30000 元購進(jìn)一批彩燈進(jìn)行銷售,由于進(jìn)貨廠家促銷,實際可以以 8 折的價格購進(jìn)這批彩燈,結(jié)果可以比計劃多購進(jìn)了 100 盞彩燈.

⑴該貨棧實際購進(jìn)每盞彩燈多少元?

⑵該貨棧打算在進(jìn)價的基礎(chǔ)上,每盞燈加價 30%,進(jìn)行銷售,該貨棧要想獲得利潤不低于 10000 元,應(yīng)至少再購進(jìn)彩燈多少盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個矩形ABCD的較短邊長為2.

(1)如圖①,若沿長邊對折后得到的矩形與原矩形相似,求它的另一邊長;

(2)如圖②,已知矩形ABCD的另一邊長為4,剪去一個矩形ABEF后,余下的矩形EFDC與原矩形相似,求余下矩形EFDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC,點DBC上,點EAG的延長線上,DEDA(如圖1).

1)求證:∠BAD=∠EDC;

2)如圖2,若點E關(guān)于直線BC的對稱點為M,連DM,AM,請判斷ADM的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為等腰直角三角形,ABD為等邊三角形,連接CD

1)求∠ACD的度數(shù)

2)作∠BAC的角平分線交CD于點E,求證:DEAE+CE

3)在(2)的條件下,P為圖形外一點,滿足∠CPB60°,求證:EP平分∠CPB

查看答案和解析>>

同步練習(xí)冊答案