已知,如圖四邊形ABCD中,∠B=90°,AB=4,BC=3,AD=13,CD=12,求:四邊形ABCD的面積.

【答案】分析:先根據(jù)勾股定理求得AC的長(zhǎng),再根據(jù)勾股定理的逆定理判斷△ACD是直角三角形,則四邊形ABCD的面積是兩個(gè)直角三角形的面積和.
解答:解:∵∠B=90°,AB=4,BC=3,
∴AC==5,
∵52+122=132,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,
∴S四邊形ABCD=S△ABC+S△ACD=×3×4+×5×12=6+30=36.
點(diǎn)評(píng):此題考查勾股定理及逆定理的應(yīng)用,判斷△ACD是直角三角形是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖四邊形ABCD中,∠B=90°,AB=4,BC=3,AD=13,CD=12,求:四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖四邊形ABCD是菱形,過(guò)AB的中點(diǎn)E作AC的垂線EF,交AD于點(diǎn)M,交CD的延長(zhǎng)線于點(diǎn)F,垂足為O.
求證:(1)M是AD的中點(diǎn);
(2)DF=
12
CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,AB、CD相交于點(diǎn)O,AC∥DB,AO=BO,E、F分別是OC、OD中點(diǎn).
求證:四邊形AFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB是⊙O的直徑,C、D為⊙O上兩點(diǎn),CF⊥AB于點(diǎn)F,CE⊥AD的延長(zhǎng)線于點(diǎn)E,且CE=精英家教網(wǎng)CF.
(1)求證:CE是⊙O的切線;
(2)若AD=CD=6,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖四邊形ABCD中,∠A=90°,AB=4,AD=3,CD=13,BC=12,求:四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案