如圖,填空:

(1)如果AB∥CD,那么∠1+      =180°,
根據(jù)是                                   ;
(2)如果∠2=     ,那么EF∥DG,
根據(jù)是                                   ;
(3)如果EF∥DG,那么∠3=   
根據(jù)是                                   .

(1),兩直線平行,同旁內(nèi)角互補
(2),同位角相等,兩直線平行
(3),兩直線平行,內(nèi)錯角相等

解析試題分析:根據(jù)平行線的判定和性質(zhì)依次分析即可.
(1)如果AB∥CD,那么∠1+=180°,根據(jù)是兩直線平行,同旁內(nèi)角互補;
(2)如果∠2=,那么EF∥DG,根據(jù)是同位角相等,兩直線平行;
(3)如果EF∥DG,那么∠3=,根據(jù)是兩直線平行,內(nèi)錯角相等.
考點:本題考查的是平行線的判定和性質(zhì)
點評:解答本題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補,兩直線平行,內(nèi)錯角相等;同位角相等,兩直線平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面內(nèi),先將一個多邊形以點O為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為k,并且原多邊形上的任一點P,它的對應(yīng)點P′在線段OP或其延長線上;接著將所得多邊形以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)一個角度θ,這種經(jīng)過和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.
(1)填空:
①如圖1,將△ABC以點A為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時針旋轉(zhuǎn)60°,得到△ADE,這個旋轉(zhuǎn)相似變換記為A(
 
,
 
);
②如圖2,△ABC是邊長為1cm的等邊三角形,將它作旋轉(zhuǎn)相似變換A(
3
,90°),得到△ADE,則線段BD的長為
 
cm;
(2)如圖3,分別以銳角三角形ABC的三邊AB,BC,CA為邊向外作正方形ADEB,BFGC,CHIA,點O1,O2,O3分別是這三個正方形的對角線交點,試分別利用△AO1O3與△ABI,△CIB與△CAO2之間的關(guān)系,運用旋轉(zhuǎn)相似變換的知識說明線段O1O3與AO2之間的關(guān)系.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,填空:(填SSS、SAS、ASA或AAS)
(1)已知BD=CE,CD=BE,利用
SSS
可以判定△BCD≌△CBE;
(2)已知AD=AE,∠ADB=∠AEC,利用
ASA
可以判定△ABD≌△ACE;
(3)已知OE=OD,OB=OC,利用
SAS
可以判定△BOE≌△COD;
(4)已知∠BEC=∠CDB,∠BCE=∠CBD,利用
AAS
可以判定△BCE≌△CBD;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河池)如圖,在10×10的正方形網(wǎng)格中,△ABC的頂點和線段EF的端點都在邊長為1的小正方形的頂點上.
(1)填空:tanA=
1
2
1
2
,AC=
2
5
2
5
(結(jié)果保留根號);
(2)請你在圖中找出一點D(僅一個點即可),連接DE、DF,使以D、E、F為頂點的三角形與△ABC全等,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點的坐標(biāo)分別為,
(其中n>0),點Bx軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿OABC的順序向點C移動,當(dāng)點P與點C重合時停止運動.設(shè)點P移動的路徑的長為l,△POC的面積為S,Sl的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

【小題1】(1)結(jié)合以上信息及圖2填空:圖2中的m=        ;
【小題2】(2)求B,C兩點的坐標(biāo)及圖2中OF的長;
【小題3】(3)在圖1中,當(dāng)動點P恰為經(jīng)過OB兩點的拋物線W的頂點時,
① 求此拋物線W的解析式;
② 若點Q在直線上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點R,滿足以B,
PQ,R四點為頂點的四邊形是菱形,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市西城區(qū)九年級第一學(xué)期期末測試數(shù)學(xué)卷 題型:解答題

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點的坐標(biāo)分別為
(其中n>0),點Bx軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿OABC的順序向點C移動,當(dāng)點P與點C重合時停止運動.設(shè)點P移動的路徑的長為l,△POC的面積為S,Sl的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

【小題1】(1)結(jié)合以上信息及圖2填空:圖2中的m=        ;
【小題2】(2)求B,C兩點的坐標(biāo)及圖2中OF的長;
【小題3】(3)在圖1中,當(dāng)動點P恰為經(jīng)過O,B兩點的拋物線W的頂點時,
① 求此拋物線W的解析式;
② 若點Q在直線上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點R,滿足以B,
PQ,R四點為頂點的四邊形是菱形,求點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案