【題目】如圖,點(diǎn)P為正方形ABCD的邊CD上一點(diǎn),BP的垂直平分線EF分別交BC、AD于E、F兩點(diǎn),GP⊥EP交AD于點(diǎn)G,連接BG交EF于點(diǎn) H,下列結(jié)論:①BP=EF;②∠FHG=45°;③以BA為半徑⊙B與GP相切;④若G為AD的中點(diǎn),則DP=2CP.其中正確結(jié)論的序號(hào)是( 。
A. ①②③④ B. 只有①②③ C. 只有①②④ D. 只有①③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,點(diǎn)是邊邊的中點(diǎn),點(diǎn)、分別是、上的兩個(gè)動(dòng)點(diǎn),則的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,P是對(duì)角線AC上任一點(diǎn)(不與A,C重合),連接BP,DP,過P作PE∥CD交AD于E,過P作PF∥AD交CD于F,連接EF.
(1)求證:△ABP≌△ADP;
(2)若BP=EF,求證:四邊形EPFD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一批單價(jià)為元的日用品,經(jīng)試銷發(fā)現(xiàn),若按每件元的價(jià)格銷售時(shí),每月能賣件,若按每件元的價(jià)格銷售時(shí),每月能賣件,假定每月銷售件數(shù)(件)是價(jià)格(元/件)的一次函數(shù),則與之間的關(guān)系式是________,銷售所獲得的利潤為(元)與價(jià)格(元/件)的關(guān)系式是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在和中,連接AC,BD交于點(diǎn)M,AC與OD相交于E,BD與OA相較于F,連接OM,則下列結(jié)論中:①;②;③;④MO平分,正確的個(gè)數(shù)有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的兩條高線,且它們相交于是邊的中點(diǎn),連結(jié),與相交于點(diǎn),已知.
(1)求證BF=AC.
(2)若BE平分.
①求證:DF=DG.
②若AC=8,求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形是平行四邊形,點(diǎn)在邊上運(yùn)動(dòng)(點(diǎn)不與點(diǎn),重合)
(1)如圖1,當(dāng)點(diǎn)運(yùn)動(dòng)到邊的中點(diǎn)時(shí),連接,若平分,證明:;
(2)如圖2,過點(diǎn)作且交的延長線于點(diǎn),連接.若,,,在線段上是否存在一點(diǎn),使得四邊形是菱形?若存在,請(qǐng)說明當(dāng)發(fā),點(diǎn)分別在線段,上什么位置時(shí)四邊形是菱形,并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,將含30°的三角尺的直角頂點(diǎn)C落在第二象限.其斜邊兩端點(diǎn)A、B分別落在x軸、y軸上且AB=12cm
(1)若OB=6cm.
①求點(diǎn)C的坐標(biāo);
②若點(diǎn)A向右滑動(dòng)的距離與點(diǎn)B向上滑動(dòng)的距離相等,求滑動(dòng)的距離;
(2)點(diǎn)C與點(diǎn)O的距離的最大值是多少cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,AB=4,點(diǎn)P是線段AD上的動(dòng)點(diǎn),連接BP,CP,若△BPC周長的最小值為16,則BC的長為( )
A.5B.6C.8D.10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com