【題目】如圖,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形擺放在一起,為公共頂點(diǎn),,它們的斜邊長為2,若固定不動(dòng),繞點(diǎn)旋轉(zhuǎn),與邊的交點(diǎn)分別為、(點(diǎn)不與點(diǎn)重合,點(diǎn)不與點(diǎn)重合),設(shè),

1)請(qǐng)?jiān)趫D(1)中找出兩對(duì)相似但不全等的三角形,并選取其中一對(duì)進(jìn)行證明.

2)求a的函數(shù)關(guān)系式,直接寫出自變量a的取值范圍.

3)以的斜邊所在的直線為軸,邊上的高所在的直線為軸,建立平面直角坐標(biāo)系如圖(2),若,求出點(diǎn)的坐標(biāo),猜想線段、之間的關(guān)系,并通過計(jì)算加以驗(yàn)證.

【答案】1ACG∽△FAG,FAG∽△FBA,證明見解析;(2b=,1a2;(3G1,0);BG2+CF2=FG2

【解析】

(1)找到有公共角的和45°角的兩個(gè)三角形即可;

(2)證明△ACG∽△FBA,利用相似三角形的對(duì)應(yīng)邊成比例可得與a的函數(shù)關(guān)系式,根據(jù)點(diǎn)F與點(diǎn)C重合時(shí)a為2,點(diǎn)G與點(diǎn)B重合時(shí)a為1,可得a的取值范圍

(3)先求得a=b=,可求點(diǎn)G1,0);根據(jù)BG=OBOG,求得FG=BC2BG=22,即可得到線段、之間的關(guān)系.

1△ACG∽△FAG△FAG∽△FBA

∵∠GAF=C=45°,

AGF=AGC,

∴△ACG∽△FAG.類似證明△FAG∽△FBA

2)∵∠CAG=CAF+45°,∠BFA=CAF+45°,

∴∠CAG=BFA

∵∠B=C=45°,

∴△ACG∽△FBA,

=

由題意可得CA=BA=

=.∴b=

自變量a的取值范圍為1a2

3)由BG=CF可得BF=CG,即a=b

b=

a=b=

OB=OC=BC=1,

OF=OG=1

G1,0).

線段BGFGCF之間的關(guān)系為BG2+CF2=FG2;

BG=OBOG=1(1)=2=CF,

FG=BC2BG= 22(2)=22

BG2+CF2=2(2)2=128,FG2=(22)2=128

BG2+CF2=FG2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象與軸和軸分別交于、兩點(diǎn),與反比例函數(shù)的圖象分別交于、兩點(diǎn).

1)如圖,當(dāng),點(diǎn)在線段上(不與點(diǎn)重合)時(shí),過點(diǎn)軸和軸的垂線,垂足為、.當(dāng)矩形的面積為2時(shí),求出點(diǎn)的位置;

2)如圖,當(dāng)時(shí),在軸上是否存在點(diǎn),使得以、為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;

3)若某個(gè)等腰三角形的一條邊長為5,另兩條邊長恰好是兩個(gè)函數(shù)圖象的交點(diǎn)橫坐標(biāo),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測(cè)試中的數(shù)據(jù)分析后,利用課外活動(dòng)時(shí)間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測(cè)試現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試成績(jī)整理后作出如下統(tǒng)計(jì)圖

請(qǐng)你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人, 訓(xùn)練后籃球定時(shí)定點(diǎn)投籃平均每個(gè)人的進(jìn)球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測(cè)試,請(qǐng)用列表或畫樹形圖的方法求恰好選中兩名男生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣2mx+m2+2m+2的圖象與x軸有兩個(gè)交點(diǎn).

(1)當(dāng)m=﹣2時(shí),求二次函數(shù)的圖象與x軸交點(diǎn)的坐標(biāo);

(2)過點(diǎn)P(0,m﹣1)作直線1y軸,二次函數(shù)圖象的頂點(diǎn)A在直線lx軸之間(不包含點(diǎn)A在直線l上),求m的范圍;

(3)在(2)的條件下,設(shè)二次函數(shù)圖象的對(duì)稱軸與直線l相交于點(diǎn)B,求ABO的面積最大時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于反比例函數(shù)y=(k≠0),下列所給的四個(gè)結(jié)論中,正確的是( 。

A. 若點(diǎn)(3,6)在其圖象上,則(﹣3,6)也在其圖象上

B. 當(dāng)k>0時(shí),yx的增大而減小

C. 過圖象上任一點(diǎn)Px軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k

D. 反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對(duì)稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為、、,的邊上一點(diǎn).

1)將繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,請(qǐng)?jiān)诰W(wǎng)格中畫出;

2)將沿一定的方向平移后,點(diǎn)的對(duì)應(yīng)點(diǎn)為,請(qǐng)?jiān)诰W(wǎng)格中畫出上述平移后的,并寫出點(diǎn)的坐標(biāo): );

3)若以點(diǎn)為位似中心,作的位似,則與點(diǎn)對(duì)應(yīng)的點(diǎn)位似坐標(biāo)為______(不用作圖,直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校組織首屆“數(shù)學(xué)文化節(jié)”活動(dòng),旨在引導(dǎo)同學(xué)們感受數(shù)學(xué)魅力,提升數(shù)學(xué)素養(yǎng),活動(dòng)中,九年級(jí)全體同學(xué)參加了“趣味數(shù)學(xué)知識(shí)競(jìng)賽”.活動(dòng)中獲得“數(shù)學(xué)之星”稱號(hào)的小穎得到了四枚紀(jì)念章,(除頭像外完全相同),如圖所示,四枚紀(jì)念章上分別印有四位數(shù)學(xué)家的頭像,她將紀(jì)念章背面朝上放在桌面上,然后從中隨機(jī)選取兩枚送給妹妹,求小穎送給妹妹的兩枚紀(jì)念章中恰好有一枚印有華羅庚頭像的概率.(提示:答題時(shí)可用序號(hào)表示相應(yīng)的紀(jì)念章)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB中,頂點(diǎn)O00),A(﹣3,4),B3,4),將△OAB與正方形ABCD組成的圖形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2019次旋轉(zhuǎn)結(jié)束時(shí),點(diǎn)D的坐標(biāo)為( 。

A.3,﹣10B.10,3C.(﹣10,﹣3D.10,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,地面BD上兩根等長立柱AB,CD之間懸掛一根近似成拋物線y= x2x+3的繩子.

(1)求繩子最低點(diǎn)離地面的距離;

(2)因?qū)嶋H需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面1.8米,求MN的長;

(3)將立柱MN的長度提升為3米,通過調(diào)整MN的位置,使拋物線F2對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)始終為,設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,當(dāng)2k2.5時(shí),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案