精英家教網如圖,在四邊形ABCD中,E、F分別是兩組對邊延長線的交點,EG、FG分別平分∠AEB,∠AFD,已知∠ABC=88°,∠ADC=72°,則∠EGF的度數(shù)為
 
度.
分析:根據(jù)題意,由三角形內角和等于180°性質得出∠EGF=180°-(∠GFE+∠GEF),后根據(jù)三角形角平分線及外角性質依次代入得出結論.
解答:精英家教網解:連接EF,
根據(jù)三角形內角和等于180°及三角形角平分線的性質,
∴∠EGF=180°-(∠GFE+∠GEF)
=180°-(∠CFE-∠CFG+∠CEF-∠CEG)
=180°-(∠CFE+∠CEF)+(∠CFG+∠CEG)
=180°-(180°-∠C)+(
1
2
∠CFD+
1
2
∠CEB)
=∠C+
1
2
(∠CFD+∠CEB)
=∠C+
1
2
(180°-∠C-∠CDA+180°-∠C-∠CBA)
=∠C+
1
2
(360°-2∠C-88°-62°)
=100°.
故答案為100.
點評:本題主要考查了三角形內角和等于180°及三角形角平分線、外角的性質,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案