【題目】如圖,拋物線與x軸交于A,B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0).與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)P在x軸下方的拋物線上,過點(diǎn)P的直線y=x+m與直線BC交于點(diǎn)E,與y軸交于點(diǎn)F,求PE+EF的最大值;
(3)點(diǎn)D為拋物線對稱軸上一點(diǎn).
①當(dāng)△BCD是以BC為直角邊的直角三角形時,求點(diǎn)D的坐標(biāo);
②若△BCD是銳角三角形,求點(diǎn)D的縱坐標(biāo)的取值范圍.
【答案】(1);(2);(3)①D點(diǎn)坐標(biāo)為(2,5)或(2,﹣1);②點(diǎn)D的縱坐標(biāo)的取值范圍為<y<5或﹣1<y<.
【解析】試題分析:(1)利用待定系數(shù)法求拋物線的解析式;
(2)易得BC的解析式為y=﹣x+3,先證明△ECF為等腰直角三角形,作PH⊥y軸于H,PG∥y軸交BC于G,如圖1,則△EPG為等腰直角三角形,PE=PG,設(shè)P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),接著利用t表示PF、PE,所以PE+EF=2PE+PF= ,然后利用二次函數(shù)的性質(zhì)解決問題;
(3)①如圖2,拋物線的對稱軸為直線x=2,設(shè)D(2,y),利用兩點(diǎn)間的距離公式得到BC2=18,DC2=4+(y﹣3)2,BD2=1+y2,討論:當(dāng)△BCD是以BC為直角邊,BD為斜邊的直角三角形時,18+4+(y﹣3)2=1+y2;當(dāng)△BCD是以BC為直角邊,CD為斜邊的直角三角形時,4+(y﹣3)2=1+y2+18,分別解方程求出t即可得到對應(yīng)的D點(diǎn)坐標(biāo);
②由于△BCD是以BC為斜邊的直角三角形有4+(y﹣3)2+1+y2=18,解出y的值,得到此時D點(diǎn)的坐標(biāo),然后結(jié)合圖形可確定△BCD是銳角三角形時點(diǎn)D的縱坐標(biāo)的取值范圍.
試題解析:解:(1)把B(3,0),C(0,3)代入得: ,解得: ,∴拋物線的解析式為;
(2)易得BC的解析式為y=﹣x+3,∵直線y=x﹣m與直線y=x平行,∴直線y=﹣x+3與直線y=x﹣m垂直,∴∠CEF=90°,∴△ECF為等腰直角三角形,作PH⊥y軸于H,PG∥y軸交BC于G,如圖1,△EPG為等腰直角三角形,PE=PG,設(shè)P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=PG= ,∴PE+EF=PE+PE+PF=2PE+PF= = =,當(dāng)t=2時,PE+EF的最大值為;
(3)①如圖2,拋物線的對稱軸為直線x==2,設(shè)D(2,y),則BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,當(dāng)△BCD是以BC為直角邊,BD為斜邊的直角三角形時,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得y=5,此時D點(diǎn)坐標(biāo)為(2,5);
當(dāng)△BCD是以BC為直角邊,CD為斜邊的直角三角形時,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得y=﹣1,此時D點(diǎn)坐標(biāo)為(2,﹣1);
綜上所述:D點(diǎn)坐標(biāo)為(2,5)或(2,﹣1).
②當(dāng)△BCD是以BC為斜邊的直角三角形時,DC2+DB2=BC2,即4+(y﹣3)2+1+y2=18,解得y1=,y2=,此時D點(diǎn)坐標(biāo)為(2, )或(2, ),所以△BCD是銳角三角形,點(diǎn)D的縱坐標(biāo)的取值范圍為<y<5或﹣1<y<.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠有4個車間,某周是質(zhì)量檢查周,現(xiàn)每個車間都原有a(a>0)個成品,且每個車間每天都生產(chǎn)b(b>0)個成品,質(zhì)量科派出若干名檢驗(yàn)員周一、周二檢驗(yàn)其中兩個車間原有的和這兩天生產(chǎn)的所有成品,然后,周三到周五檢驗(yàn)另外兩個車間原有的和本周生產(chǎn)的所有成品,假定每名檢驗(yàn)員每天檢驗(yàn)的成品數(shù)相同.
(1)這若干名檢驗(yàn)員1天共檢驗(yàn)多少個成品?(用含a、b的代數(shù)式表示)
(2)若一名檢驗(yàn)員1天能檢驗(yàn)b個成品,則質(zhì)量科至少要派出多少名檢驗(yàn)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】攀枝花芒果由于品質(zhì)高、口感好而聞名全國,通過優(yōu)質(zhì)快捷的網(wǎng)絡(luò)銷售渠道,小明的媽媽先購買了2箱A品種芒果和3箱B品種芒果,共花費(fèi)450元;后又購買了l箱A品種芒果和2箱B品種芒果,共花費(fèi)275元(每次兩種芒果的售價都不變).
(1)問A品種芒果和B品種芒果的售價分別是每箱多少元?
(2)現(xiàn)要購買兩種芒果共18箱,要求B品種芒果的數(shù)量不少于A品種芒果數(shù)量的2倍,但不超過A品種芒果數(shù)量的4倍,請你設(shè)計(jì)購買方案,并寫出所需費(fèi)用最低的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)官方數(shù)據(jù)統(tǒng)計(jì),70周年國慶閱兵網(wǎng)上總觀看人次突破513000000,最高同時在線人數(shù)突破600萬.將513000000用科學(xué)記數(shù)法表示應(yīng)為( 。
A.5.13×108B.5.13×109C.513×106D.0.513×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, , , 的高與角平分線相交點(diǎn),過點(diǎn)作于,交于.下列說法:①;②;③;④;⑤.正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A.兩直線平行,內(nèi)錯角相等
B.同旁內(nèi)角互補(bǔ),兩直線平行
C.無理數(shù)是無限循環(huán)小數(shù)
D.有限小數(shù)是有理數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com