精英家教網 > 初中數學 > 題目詳情
5、若一個正整數能表示為兩個正整數的平方差,則稱這個正整數為“智慧數”(如3=22-12,16=52-32).已知智慧數按從小到大順序構成如下數列:
3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….
則第2006年智慧數是(  )
分析:根據題意觀察探索規(guī)律,知全部智慧數從小到大可按每三個數分一組,從第2組開始每組的第一個數都是4的倍數.歸納可得第n組的第一個數為4n(n≥2),又因為2006=3×668+2,所以第2006個智慧數是第669組中的第2個數,從而得到4×669+1=2677.
解答:解:觀察探索規(guī)律,知全部智慧數從小到大可按每三個數分一組,從第2組開始每組的第一個數都是4的倍數,
歸納可得第n組的第一個數為4n(n≥2).
因2006=3×668+2,
所以第2006個智慧數是第669組中的第2個數,
即為4×669+1=2677.
故選C.
點評:本題考查了整數問題的綜合運用,解題的關鍵是根據題意找出規(guī)律,從而得出答案,此題難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

25、若一個正整數能表示為兩個連續(xù)偶數的平方差,那么這個正整數為“神秘數”.如4=22-02,12=42-22,20=62-42,因此4,12,20這三個數都是神秘數
(1)28和76是神秘數嗎?為什么?
(2)設兩個連續(xù)偶數為2k+2和2k(k為非負整數),由這兩個連續(xù)偶數構成的神秘數是4的倍數嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

15、一個正整數若能表示為兩個正整數的平方差,則稱這個正整數為“智慧數”,比如16=52-32,16就是一個“智慧數”.在正整數中從1開始數起,試問第1998個“智慧數”是哪個數?并請你說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

若一個正整數能表示為兩個連續(xù)偶數的平方差,那么這個正整數為“神秘數”.如4=22-02,12=42-22,20=62-42,因此4,12,20這三個數都是神秘數
(1)28和76是神秘數嗎?為什么?
(2)設兩個連續(xù)偶數為2k+2和2k(k為非負整數),由這兩個連續(xù)偶數構成的神秘數是4的倍數嗎?為什么?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

若一個正整數能表示為兩個連續(xù)偶數的平方差,那么這個正整數為“神秘數”.如4=22-02,12=42-22,20=62-42,因此4,12,20這三個數都是神秘數
(1)28和76是神秘數嗎?為什么?
(2)設兩個連續(xù)偶數為2k+2和2k(k為非負整數),由這兩個連續(xù)偶數構成的神秘數是4的倍數嗎?為什么?

查看答案和解析>>

同步練習冊答案