【題目】(2016四川省涼山州)閱讀下列材料并回答問題:

材料1:如果一個三角形的三邊長分別為a,b,c,記,那么三角形的面積為

古希臘幾何學(xué)家海倫(Heron,約公元50年),在數(shù)學(xué)史上以解決幾何測量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式

我國南宋數(shù)學(xué)家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:

下面我們對公式②進行變形:

這說明海倫公式與秦九韶公式實質(zhì)上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式

問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點分別是D、E、F

(1)求△ABC的面積;

(2)求⊙O的半徑

【答案】(1);(2)

【解析】

試題分析:(1)由已知△ABC的三邊a=3,b=12,c=7,可知這是一個一般的三角形,故選用海倫﹣秦九韶公式求解即可;.

(2)由三角形的面積=lr,計算即可.

試題解析:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==

(2)∵△ABC的周長l=AB+BC+AC=32,∴S=lr=,∴r==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(a≠0)經(jīng)過點A(4,﹣5),與x軸的負半軸交于點B,與y軸交于點C,且OC=5OB,拋物線的頂點為點D

(1)求這條拋物線的表達式;

(2)聯(lián)結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;

(3)如果點E在y軸的正半軸上,且∠BEO=∠ABC,求點E的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x=﹣1是關(guān)于x的一元二次方程x2﹣x+c=0的一個根,則c的值是( 。
A.2
B.1
C.0
D.-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校舉辦的足球比賽中,規(guī)定:勝一場得3分,平一場得1分,負一場得0分.某班足球隊參加了12場比賽,共得22分,已知這個球隊只輸了2場,那么此隊勝幾場,平幾場?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CD翻折,使點A落在AB上的點E處;再將邊BC沿CF翻折,使點B落在CE的延長線上的點B處,兩條折痕與斜邊AB分別交于點D、F,則線段BF的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016北京市)在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(),點Q的坐標(biāo)為(,),且,,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點P,Q相關(guān)矩形.下圖為點PQ 相關(guān)矩形的示意圖

1)已知點A的坐標(biāo)為(1,0

若點B的坐標(biāo)為(31)求點A,B相關(guān)矩形的面積;

C在直線x=3上,若點A,C相關(guān)矩形為正方形,求直線AC的表達式;

2O的半徑為,點M的坐標(biāo)為(m,3).若在O上存在一點N,使得點M,N相關(guān)矩形為正方形,求m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年我市承接產(chǎn)業(yè)轉(zhuǎn)移示范區(qū)建設(shè)成效明顯,一季度完成固定資產(chǎn)投資238億元,用科學(xué)記數(shù)法可記作(

A.238×108B.23.8×109C.2.38×1010D.0.238×1011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班舉辦元旦聯(lián)歡會,班長對全班同學(xué)最愛吃哪幾種水果這一問題作出了調(diào)查,班長在確定購買哪一種水果時,最值得關(guān)注的統(tǒng)計量是( 。

A.中位數(shù)B.平均數(shù)C.眾數(shù)D.加權(quán)平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣6的絕對值是

查看答案和解析>>

同步練習(xí)冊答案