(1)已知x-y=2+a,y-z=2-a,且a2=7,試求x2+y2+z2-xy-yz-zx的值.
(2)已知對(duì)多項(xiàng)式2x3-x2-13x+k進(jìn)行因式分解時(shí)有一個(gè)因式是2x+3,試求4k2+4k+1的值.

解:(1)∵x-y=2+a,y-z=2-a,
∴x-z=4,
∴(x-y)2+(y-z)2+(x-z)2=(2+a)2+(2-a)2+42
即x2-2xy+y2+y2-2yz+z2+x2-2xz+z2=4+4a+a2+4-4a+a2+16,
整理得,2(x2+y2+z2-xy-yz-zx)=2(a2+12),
∵a2=7,
∴x2+y2+z2-xy-yz-zx=7+12=19;

(2)設(shè)因式分解的另一個(gè)因式為x2+ax+b,
則(2x+3)(x2+ax+b)=2x3+2ax2+2bx+3x2+3ax+3b=2x3+(2a+3)x2+(2b+3a)x+3b=2x3-x2-13x+k,
所以,
解得,
所以,4k2+4k+1=(2k+1)2=[2×(-)+1]2=(-20)2=400.
分析:(1)把已知條件相加求出x-z=4,然后求出三個(gè)等式的平方和,再代入數(shù)據(jù)整理即可得解;
(2)設(shè)因式分解的另一個(gè)因式為x2+ax+b,然后利用多項(xiàng)式的乘法運(yùn)算法則展開,然后根據(jù)對(duì)應(yīng)項(xiàng)系數(shù)相等列出方程組求出a、b、k的值,把多項(xiàng)式4k2+4k+1利用完全平方公式進(jìn)行因式分解,代入k的值進(jìn)行計(jì)算即可得解.
點(diǎn)評(píng):本題考查了完全平方公式以及因式分解的意義,(1)中觀察出所求代數(shù)式是x、y、z三數(shù)的差的平方和是解題的關(guān)鍵,(2)中根據(jù)因式分解與多項(xiàng)式的乘法是互逆運(yùn)算求出k的值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖為某班35名學(xué)生在某次社會(huì)實(shí)踐活動(dòng)中揀廢棄的礦泉水瓶情況條形統(tǒng)計(jì)圖,圖中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全.已知此次活動(dòng)中學(xué)生揀到礦泉水瓶個(gè)數(shù)中位數(shù)是5個(gè),則根據(jù)統(tǒng)計(jì)圖,下列選項(xiàng)中的( 。⿺(shù)值無(wú)法確定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知c<0,0<|a|<|b|<|c|,
b2c
a
=-
b
a
ac
,則a、b、c由小到大的順序排列
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD,OA與x軸正半軸夾角為60°,點(diǎn)A的橫坐標(biāo)為2,點(diǎn)C的橫坐標(biāo)為-
3
2
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知方程組
x+y=2
y+z=3
z+x=7
,則x+y+z等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a、b(a≠b)分別滿足a2+2a=2,b2+2b=2.求
1
a
+
1
b
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案