【題目】數(shù)軸上、、三點所代表的數(shù)分別是、、,且.若下列選項中,有一個表示、三點在數(shù)軸上的位置關(guān)系,則此選項為何?(

A.

B.

C.

D.

【答案】A

【解析】

從選項數(shù)軸上找出a、B、c的關(guān)系,代入|c﹣1|﹣|a﹣1|=|a﹣c|.看是否成立.

數(shù)軸上A、B、C三點所代表的數(shù)分別是a、1、c,設(shè)B表示的數(shù)為b,

∴b=1,

∵|c﹣1|﹣|a﹣1|=|a﹣c|.

∴|c﹣b|﹣|a﹣b|=|a﹣c|.

A、b<a<c,則有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a=|a﹣c|.正確,

B、c<b<a則有|c﹣b|﹣|a﹣b|=b﹣c﹣a+b=2b﹣c﹣a≠|(zhì)a﹣c|.故錯誤,

C、a<c<b,則有|c﹣b|﹣|a﹣b|=b﹣c﹣b+a=a﹣c≠|(zhì)a﹣c|.故錯誤.

D、b<c<a,則有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a≠|(zhì)a﹣c|.故錯誤.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠BAC=90°,ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊作正方形ADEF,連接CF.

(1)如圖1,當(dāng)點D在線段BC上時.求證:CF+CD=BC;

(2)如圖2,當(dāng)點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關(guān)系;

(3)如圖3,當(dāng)點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;

①請直接寫出CF,BC,CD三條線段之間的關(guān)系;

②若正方形ADEF的邊長為2,對角線AE,DF相交于點O,連接OC.求OC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCDD=100°,AC平分BCD,ACB=40°,BAC=70°.

(1)ADBC平行嗎?試寫出推理過程;

(2)DACEAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BC=8,tanB= ,點D在BC上,且BD=AD,求AC的長和cos∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班級從甲乙兩位同學(xué)中選派一人參加“秀美山河”知識競賽,老師對他們的五次模擬成績(單位:分)進行了整理,美工計算出甲成績的平均數(shù)是80,甲乙成績的方差分別是320,40,但繪制的統(tǒng)計圖尚不完整.
甲乙兩人模擬成績統(tǒng)計表

根據(jù)以上信息,請你解答下列問題:
(1)a=;
(2)請完成圖中表示甲成績變化情況的折線;
(3)求乙成績的平均數(shù);
(4)從平均數(shù)和方差的角度分析,誰將被選中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商銷售一種圓盤,圓盤的半徑x(cm),圓盤的售價y與x成正比例,圓盤的進價與x2成正比例,售出一個圓盤的利潤是P(元).當(dāng)x=10時,y=80,p=30.(利潤=售價﹣進價).
(1)求y與x滿足的函數(shù)關(guān)系式;
(2)求P與x滿足的函數(shù)關(guān)系式;
(3)當(dāng)售出一個圓盤所獲得的利潤是32元時,求這個圓盤的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在數(shù)軸上點表示數(shù),點表示數(shù),且、滿足

表示的數(shù)為________;點表示的數(shù)為________.

若點與點之間的距離表示為,點與點之間的距離表示為,請在數(shù)軸上找一點,使,則點表示的數(shù)________.

若在原點處放一擋板,一小球甲從點處以個單位/秒的速度向左運動;同時另一小球乙從點處以個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為(秒),請分別表示出甲、乙兩小球到原點的距離(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)產(chǎn)品生產(chǎn)基地收獲紅薯192噸,準(zhǔn)備運給甲、乙兩地的承包商進行包銷.該基地用大、小兩種貨車共18輛恰好能一次性運完這批紅薯,已知這兩種貨車的載重量分別為14/噸和8/輛,運往甲、乙兩地的運費如下表:

車型

運費

運往甲地/(元/輛)

運往乙地/(元/輛)

大貨車

720

800

小貨車

500

650

(1)求這兩種貨車各用多少輛;

(2)如果安排10輛貨車前往甲地,其余貨車前往乙地,其中前往甲地的大貨車為a輛,總運費為w元,求w關(guān)于a的函數(shù)關(guān)系式;

(2)在(2)的條件下,若甲地的承包商包銷的紅薯不少于96噸,請你設(shè)計出使總運費最低的貨車調(diào)配方案,并求出最低總運費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是雙曲線y= 在第二象限分支上的任意一點,點B、點C、點D分別是點A關(guān)于x軸、坐標(biāo)原點、y軸的對稱點.若四邊形ABCD的面積是8,則k的值為( )

A.﹣1
B.1
C.2
D.﹣2

查看答案和解析>>

同步練習(xí)冊答案