兩個反比例函數(shù)y=
k
x
y=
1
x
在第一象限內(nèi)的圖象如圖所示,點P在y=
k
x
的圖象上,PC⊥x軸于精英家教網(wǎng)點C,交y=
1
x
的圖象于點A,PD⊥y軸于點D,交y=
1
x
的圖象于點B,當點P在y=
k
x
的圖象上運動時,以下結(jié)論:
①△ODB與△OCA的面積相等;②四邊形PAOB的面積不會發(fā)生變化;③PA與PB始終相等;④當點A是PC的中點時,點B一定是PD的中點.
其中一定正確的是
 
(把你認為正確結(jié)論的序號都填上,答案格式:“①②③④”).
分析:本題考查的是反比例函數(shù)中k的幾何意義,無論如何變化,只要知道過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是個恒等值即易解題.
解答:解:①△ODB與△OCA的面積相等都為
1
2
;
②四邊形PAOB的面積不會發(fā)生變化為k-1;
③不能確定PA與PB是否始終相等;
④由于反比例函數(shù)是軸對稱圖形,當A為PC的中點時,B為PD的中點,故本選項正確.
故其中一定正確的結(jié)論有①、②、④.
故答案為:①、②、④.
點評:本題主要考查反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)y=
k
x
中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)?疾榈囊粋知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,兩個反比例函數(shù)y=
k1
x
y=
k2
x
(其中k1>k2>0)在第一象限內(nèi)的圖象依次是C1和C2,設(shè)點P在C1精英家教網(wǎng),PC⊥x軸于點C,交C2于點A,PD⊥y軸于點D,交C2于點B,下列說法正確的是( 。
①△ODB與△OCA的面積相等;
②四邊形PAOB的面積等于k2-k1;③PA與PB始終相等;
④當點A是PC的中點時,點B一定是PD的中點.
A、①②B、①②④
C、①④D、①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,兩個反比例函數(shù)y=
8
x
y=
4
x
在第一象限內(nèi)的圖象依次是C1和C2,設(shè)點P在C1上,PC⊥x軸于點C,交C2于點A,PD⊥y軸于點D,交C2于點B,則四邊形PAOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,兩個反比例函數(shù)y=
k1
x
y=
k2
x
(其中k1>k2>0)在第一象限內(nèi)的圖象依次是C1精英家教網(wǎng)
C2,設(shè)點P在C1上,PC⊥x軸于點C,交C2于點A,PD⊥y軸于點D,交C2于點B,下列說法正確的是(  )  
①△ODB與△OCA的面積相等;②四邊形PAOB的面積等于k1-k2
③PA與PB始終相等;        ④當點A是PC的三等分點時,點B一定是PD三等分點.
A、①②B、①②④
C、①④D、①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知反比例函數(shù)y=
k1
x
(k1>0)和y=
k2
x
(k2<0),點A在y軸的正半軸上,過點A作直線BC∥x軸,且分別與兩個反比例函數(shù)的圖象交于點B和C,連接OC、OB.若△BOC的面積為
5
2
,AC:AB=2:3,則k1•k2=
-6
-6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知兩個反比例函數(shù)y=
8
x
y=
4
x
在第一象限內(nèi)的圖象如圖所示,點P在y=
8
x
上,PC⊥x軸于點C,交y=
4
x
的圖象于點A,PD⊥y軸于點D,交y=
4
x
的圖象于點B,則陰影部分的面積為
4
4

查看答案和解析>>

同步練習冊答案