附加題:已知,直線AB∥CD.
如圖,∠A、∠C、∠AEC之間有什么關(guān)系?請(qǐng)說(shuō)明理由.

解:∠AEC=∠A+∠C.理由如下:
過(guò)E作EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠C=∠FEC;
∵AB∥EF,
∴∠A=∠AEF;
∴∠AEC=∠AEF+∠FEC=∠A+∠C.
分析:過(guò)E作EF∥AB,根據(jù)平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等即可得到結(jié)論.
點(diǎn)評(píng):本題主要考查了平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等.正確作輔助線是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、【附加題】已知二次函數(shù)y=x2+2(m+1)x-m+1.
(1)隨著m的變化,該二次函數(shù)圖象的頂點(diǎn)P是否都在某條拋物線上?如果是,請(qǐng)求出該拋物線的函數(shù)表達(dá)式;如果不是,請(qǐng)說(shuō)明理由.
(2)如果直線y=x+1經(jīng)過(guò)二次函數(shù)y=x2+2(m+1)x-m+1圖象的頂點(diǎn)P,求此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、附加題:已知,直線AB∥CD.
如圖,∠A、∠C、∠AEC之間有什么關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題:
已知將一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如圖1擺放,點(diǎn)O、A、C在一條直線上.將直角三角板OCD繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng),變化擺放如圖位置
(1)如圖1,當(dāng)點(diǎn)O、A、C在同一條直線上時(shí),∠BOD的度數(shù)是
 
;如圖2,若要OB恰好平分∠COD,則∠AOC的度數(shù)是
 

精英家教網(wǎng)
(2)如圖3,當(dāng)三角板OCD擺放在∠AOB內(nèi)部時(shí),作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點(diǎn)O任意轉(zhuǎn)動(dòng),∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說(shuō)明理由.
精英家教網(wǎng)
(3)當(dāng)三角板OCD從圖1的位置開(kāi)始,繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)一周,保持射線OM平分∠AOC、射線ON平分∠BOD(∠AOC≤180°,∠BOD≤180°),在旋轉(zhuǎn)過(guò)程中,(2)中的結(jié)論是否保持不變?如果保持不變,請(qǐng)說(shuō)明理由;如果變化,請(qǐng)說(shuō)明變化的情況和結(jié)果(即旋轉(zhuǎn)角度a在什么范圍內(nèi)時(shí)∠MON的度數(shù)是多少).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

附加題:已知,直線ABCD.
如圖,∠A、∠C、∠AEC之間有什么關(guān)系?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案