【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
【答案】
(1)
證明:連接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,
∴CD是⊙O的切線.
(2)
解:∵∠A=30°,
∴∠1=2∠A=60°.
∴S扇形BOC= .
在Rt△OCD中,
∵ ,
∴CD=2 .
∴ .
∴圖中陰影部分的面積為: .
【解析】此題綜合考查了等腰三角形的性質(zhì)、切線的判定方法、扇形的面積計(jì)算方法.(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;(2)陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點(diǎn)D,下列結(jié)論正確的有( )
①AD=BD=BC;②△BCD≌△ABC;③AD2=ACDC;④點(diǎn)D是AC的黃金分割點(diǎn).
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“春節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“湯圓”的習(xí)俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡 (B)、菜餡(C)、三丁餡 (D)四種不同口味湯圓的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民人數(shù)是 人;
(2)將圖 ①②補(bǔ)充完整;( 直接補(bǔ)填在圖中)
(3)求圖②中表示“A”的圓心角的度數(shù);
(4)若居民區(qū)有8000人,請估計(jì)愛吃D湯圓的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的單位長度為1.
(1)如果點(diǎn)A,D表示的數(shù)互為相反數(shù),那么點(diǎn)B表示的數(shù)是多少?
(2)如果點(diǎn)B,D表示的數(shù)互為相反數(shù),那么圖中表示的四個點(diǎn)中,哪一點(diǎn)表示的數(shù)的絕對值最大?為什么?
(3)當(dāng)點(diǎn)B為原點(diǎn)時,若存在一點(diǎn)M到A的距離是點(diǎn)M到D的距離的2倍,則點(diǎn)M所表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點(diǎn)P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( 。
A. 3km/h和4km/h B. 3km/h和3km/h
C. 4km/h和4km/h D. 4km/h和3km/h
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問題
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出B和C的坐標(biāo);
(3)計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,E是OD的中點(diǎn),連接AE并延長交DC于點(diǎn)F,則DF:FC=( )
A.1:4
B.1:3
C.1:2
D.1:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE.
(2)如圖,若BE的延長線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45,原題設(shè)其它條件不變,求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“世界杯”期間,某娛樂場所舉辦“消夏看球賽”活動,需要對會場進(jìn)行布置,計(jì)劃在現(xiàn)場安裝小彩燈和大彩燈.已知安裝5個小彩燈和4個大彩燈共需150元;安裝7個小彩燈和6個大彩燈共需220元.
(1)安裝1個小彩燈和1個大彩燈各需多少元?
(2)若場地共需安裝小彩燈和大彩燈300個,費(fèi)用不超過4350元,則最多安裝大彩燈多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com