在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉,發(fā)展低碳經(jīng)濟,全面實現(xiàn)低碳生活成為人們的共識,某企業(yè)采用技術革新,節(jié)能減排,經(jīng)分析前5個月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關系是y=-2x+50.
(1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應獲得的利潤也有所提高,且相應獲得的利潤p(萬元)與月份x(月)的函數(shù)關系如圖所示,那么哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元?
(2)受國家政策的鼓勵,該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個月的基礎上都下降a%,與此同時,每排放一噸二氧化碳,企業(yè)相應獲得的利潤在上一個月的基礎上都增加50%,要使今年6、7月份月利潤的總和是今年5月份月利潤的3倍,求a的值(精確到個位).
(參考數(shù)據(jù):=7.14,=7.21,=7.28,=7.35)
(1)5,4000;(2)13.

試題分析:(1)根據(jù)圖象可以知道利潤p(萬元)與月份x是一次函數(shù)關系,并且隨著月份的增加利潤也增加,首先根據(jù)圖象確定利潤p與x的函數(shù)關系,然后利用函數(shù)的增減性即可確定今年哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元;
(2)由于該企業(yè)決定從今年6月份起,每月二氧化碳排放量在上一個月的基礎上都下降a%,與此同時,每排放一噸二氧化碳,企業(yè)相應獲得的利潤在上一個月的基礎上都增加50%.
試題解析:(1)根據(jù)圖象知道當x=1,p=80,
當x=4,p=95,
設p=kx+b,
,解得,
∴p=5x+75;根據(jù)k>0,y隨x增大而增大,
∴當x=5時,p最大,p=5×5+75=100萬元;
∴5月份的利潤是:100萬×40=4000萬元;
(2)(2)∵該企業(yè)決定從今年6月份起,每月二氧化碳排放量在上一個月的基礎上都下降a%,
而當x=5時,y=40,
∴6月份的二氧化碳排放量為40(1-a%),
7月份的二氧化碳排放量為40(1-a%)2,
5月份的利潤為4000萬元,
∴6月份的利潤為100(1+50%)×40(1-a%),
7月份的利潤為100(1+50%)×(1+50%)×40(1-a%)2,
∴100(1+50%)×40(1-a%)+100(1+50%)×(1+50%)×40(1-a%)2=3×4000,
∴a=13.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

將拋物線y=(x-1)2+3向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為( 。
A.y=(x-2)2B.y=(x-2)2+6C.y=x2+6D.y=x2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,等邊△ABC邊長為6,P為BC邊上一點,且BP=4,點E、F分別在邊AB、AC上,且∠EPF=60°,設BE=x,CF=y.
(1)求y與x的函數(shù)關系式,并寫出x的取值范圍;
(2)①若四邊形AEPF的面積為時,求x的值.
②四邊形AEPF的面積是否存在最大值?若存在,請求出面積的最大值及此時x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=x2+mx+n的圖象經(jīng)過A,C兩點.

(1)求此拋物線的函數(shù)表達式;
(2)求證:∠BEF=∠AOE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的()倍.若存在,請直接寫出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線y=x2+x向下平移2個單位,所得拋物線的表達式是________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果二次函數(shù)的最小值為負數(shù),則m的取值范圍是(   )
A.m﹤1B.m﹥1C.m≤1D.m≥1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)y=x2﹣2x+c的圖象與y軸的交點為(0,﹣3),則此二次函數(shù)有(     )
A.最小值為-2B.最小值為-3C.最小值為-4D.最大值為-4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若A(-4,y1),B(-3,y2),C(1,y3)為二次函數(shù)y=-x2+4x-5的圖象上的三點,則y1,y2,y3的大小關系是(     )    
A.B.
C. D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O為坐標原點,點A、B的坐標分別為(8,0)、(0,6).動點Q從點O、動點P從點A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運動,運動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連接CD、QC.
(1)求當t為何值時,點Q與點D重合?
(2)設△QCD的面積為S,試求S與t之間的函數(shù)關系式,并求S的最大值;
(3)若⊙P與線段QC只有一個交點,請直接寫出t的取值范圍.

查看答案和解析>>

同步練習冊答案