解:(1)設函數(shù)解析式為y=a(x
2-2x-3),
把點(2,3)代入y=a(x
2-2x-3)得,a(2
2-2×2-3)=3,
解得a=-1,
故函數(shù)解析式為y=-x
2+2x+3,
當y=0時,-x
2+2x+3=0,
解得x
1=-1,x
2=3.
故函數(shù)與x軸的交點坐標為A(-1,0)和點B(3,0),
當x=0時,y=-3,函數(shù)與y軸的交點為(0,-3),
又因為函數(shù)圖象對稱軸為x=-
=1,
將x=1代入解析式得,y=-1+2+3=4,
則函數(shù)頂點坐標為(1,4).如圖:
(2)由圖可知,0<x<1時,y大于3且隨x的增大而增大.
(3)作B關于y軸的對稱點B′則B′坐標為(-3,0),連接DB′,
設DB′的解析式為y=kx+b,
將(1,4),(-3,0)分別代入解析式得,
,
解得
,
則函數(shù)解析式為y=x+3.
當x=0時,y=3,
則P點坐標為(0,3).
分析:(1)根據(jù)二次函數(shù)與一元二次方程的關系可知,方程x
2-2x-3=0的兩個根即為函數(shù)與x軸的交點橫坐標,利用待定系數(shù)法列出函數(shù)解析式,將(2,3)代入解析式,求出系數(shù)即可,根據(jù)函數(shù)解析式求出函數(shù)圖象的頂點坐標,再求出與坐標軸的交點坐標即可畫出函數(shù)圖象.
(2)根據(jù)圖象直接解答即可.
(3)作B關于y軸的對稱點B′則B′坐標為(-3,0),連接DB′,設DB′的解析式為y=kx+b,求出函數(shù)解析式,與y軸交點坐標即為P點坐標.
點評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點有拋物線的頂點公式、軸對稱最短路徑問題及函數(shù)與坐標軸的交點等問題.要注意數(shù)形結合.