【題目】如圖,在四邊形ABCD中,AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,則∠DAB的度數(shù)是______°.
【答案】135°
【解析】
由已知可得AB=BC,從而可求得∠BAC的度數(shù).設(shè)AB=2x ,通過計(jì)算證明AC2+AD2=CD2,從而證得ΔACD是直角三角形,即可得到∠DAC=90°,從而求得∠DAB的度數(shù).
解:∵AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,
∴AB=BC,
∴∠BAC=∠ACB=45°,
∴設(shè)AB=2x,則BC=2x,CD=3x,DA=x,
∴AC2=AB2+BC2=(2x)2+(2x)2=8x2
又CD2-AD2=(3x)2-x2=8x2
∴AC2= CD2-AD2
∵AC2+AD2=CD2
∴ΔACD是直角三角形,
∴∠DAC=90°,
∴∠DAB=45°+90°=135°.
故答案是:135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點(diǎn)A與原點(diǎn)重合,點(diǎn)B在y軸的正半軸上,點(diǎn)D在x軸的負(fù)半軸上,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′與CD相交于點(diǎn)M,則點(diǎn)M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:①abc<0;②2a﹣b<0;③b2>(a+c)2;④點(diǎn)(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點(diǎn)P2018的坐標(biāo)為( 。
A. (4030,1) B. (4029,﹣1)
C. (4033,1) D. (4035,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙A交AB于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)E作AB的平行線EF交⊙A于點(diǎn)F,連接AF、BF、DF
(1)求證:BF是⊙A的切線.
(2)當(dāng)∠CAB等于多少度時(shí),四邊形ADFE為菱形?請(qǐng)給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王明同學(xué)隨機(jī)抽查某市個(gè)小區(qū)所得到的綠化率情況,結(jié)果如下表:
小區(qū)綠化率 | ||||
小區(qū)個(gè)數(shù) |
則關(guān)于這個(gè)小區(qū)的綠化率情況,下列說法錯(cuò)誤的是( )
A. 極差是13% B. 眾數(shù)是25% C. 中位數(shù)是25% D. 平均數(shù)是26.2%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與雙曲線在第一象限交于點(diǎn),且點(diǎn)的橫坐標(biāo)為4,點(diǎn)在雙曲線上.
(1)求雙曲線的函數(shù)解析式;
(2)若點(diǎn)的縱坐標(biāo)為8,試判斷形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店將進(jìn)價(jià)為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價(jià)減少銷售量的辦法增加利潤,如果這種商品每件的銷售價(jià)每提高1元,其每天的銷售量就減少20件.
(1)當(dāng)售價(jià)定為12元時(shí),每天可售出________件;
(2)要使每天利潤達(dá)到640元,則每件售價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點(diǎn)E,過A作AF垂直BE于點(diǎn)F,過C作CG垂直BE于點(diǎn)G,在FA上截取FH=FB,再過H作HP垂直AF交AB于P.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com