【題目】如圖,數(shù)軸上線段AB=2(單位長度),CD=4(單位長度),點A在數(shù)軸上表示的數(shù)是﹣4,點C在數(shù)軸上表示的數(shù)是4,若線段AB以3個單位長度/秒的速度向右勻速運動,同時線段CD以1個單位長度/秒的速度向左勻速運動.
(1)問運動多少秒時BC=2(單位長度)?
(2)線段AB與線段CD從開始相遇到完全離開共經過多長時間?
(3)P是線段AB上一點,當B點運動到線段CD上,且點P不在線段CD上時,是否存在關系式BD﹣AP=3PC.若存在,求線段PD的長;若不存在,請說明理由.
【答案】(1)1或2;(2)1.5秒;(3)5或 3.5.
【解析】整體分析:
(1)分點B在點C的左邊和點B在點C的右邊兩種情況討論;(2)所走路程為這兩條線段的和,用路程,速度,時間之間的關系可求解;(3)隨著點B的運動,分別討論當點B和點C重合、點C在點A和B之間及點A與點C重合時的情況.
解:(1)設運動t秒時,BC=2單位長度,
①當點B在點C的左邊時,
由題意得:3t+2+t=6,
解得:t=1;
②當點B在點C的右邊時,
由題意得:3t﹣2+t=6,
解得:t=2.
(2)(2+4)÷(3+1)=1.5(秒).
答:線段AB與線段CD從開始相遇到完全離開共經過1.5秒長時間.
(3)存在關系式BD﹣AP=3PC.
設運動時間為t秒,
①當t=(4+2)÷(3+1)=1.5時,點B和點C重合,點P在線段AB上,0<PC≤2,且BD=CD=4,
PA+3PC=AB+2PC=2+2PC,
當PC=1時,BD=AP+3PC,即BD﹣AP=3PC;
②當1.5<t<2.5時,點C在點A和點B之間,0<PC<2:
當點P在線段BC上時,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC
當PC=0.5時,有BD=AP+3PC,即 BD﹣AP=3PC,
③當t=2.5時,點A與點C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,
當PC=0.5時,有BD=AP+3PC,即BD﹣AP=3PC,
∵P在C點左側或右側,
∴PD的長有2種可能,即5或3.5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在4×4的正方形網格中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點A.按下列要
求畫圖:
(1)在圖①中,以格點為頂點,AB為一邊畫一個等腰三角形ABC;
(2)在圖②中,以格點為頂點,AB為一邊畫一個正方形;
(3)在圖③中,以點A為一個頂點,另外三個頂點也在格點上,畫一個面積最大的正方
形,這個正方形的面積= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AD是角平分線,∠B=54°,∠C=76°.
(1)求∠ADB和∠ADC的度數(shù);
(2)若DE⊥AC,求∠EDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉一周.在旋轉的過程中,假如第t秒時,OA、OC、ON三條射線構成相等的角,求此時t的值為多少?
(2)將圖1中的三角板繞點O順時針旋轉圖2,使ON在∠AOC的內部,請?zhí)骄浚?/span>∠AOM與∠NOC之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】是某汽車行駛的路程S(km)與時間t(min)的函數(shù)關系圖.觀察圖中所提供的信息,解答下列問題:
(1)汽車在前9分鐘內的平均速度是多少?
(2)汽車在中途停了多長時間?
(3)當16≤t≤30時,求S與t的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是正方形ABCD對角線BD上一點,PE⊥DC,PF⊥BC,E、F分別為垂足.
(1)求證:△APD≌△CPD;
(2)若CF=3,CE=4,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上的一點,DE⊥AB,DF⊥AC,垂足分別是E、F,EF∥BC.
(1)求證:△BDE≌△CDF;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的頂點坐標分別為 A(1,1),B(1,-1),C(-1,-1),D(-1,1),y軸上有一點 P(0,2).作點P關于點A的對稱點P1,作點P1關于點B的對稱點P2,作點P2關于點C的對稱軸P3,作點P3關于點D的對稱點P4,作點P4關于點A的對稱點P5,作點P5關于點B的對稱點P6,…,按此操作下去,則點P2016的坐標為( )
A. (0,2) B. (2,0) C. (0,-2) D. (-2,0)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com