解答:解:(1)由拋物線y=ax
2+bx+2過點(diǎn)A(-3,0),B(1,0),則
解這個(gè)方程組,得a=-
,b=-
.
∴二次函數(shù)的關(guān)系解析式為y=-
x
2-
x+2.
(2)設(shè)點(diǎn)P坐標(biāo)為(m,n),則n=-
m
2-
m+2.
連接PO,作PM⊥x軸于M,PN⊥y軸于N.
PM=-
m
2-
m+2,PN=-m,AO=3.
當(dāng)x=0時(shí),y=-
×0-
×0+2=2,所以O(shè)C=2
S
△PAC=S
△PAO+S
△PCO-S
△ACO
=
AO•PM+
CO•PN-
AO•CO
=
×3•(-
m
2-
m+2)+
×2•(-m)-
×3×2
=-m
2-3m
∵a=-1<0
∴函數(shù)S
△PAC=-m
2-3m有最大值
當(dāng)m=-
=-
時(shí),S
△PAC有最大值.
此時(shí)n=-
m
2-
m+2=-
×(-)2-
×(-)+2=
∴存在點(diǎn)P(-
,
),使△PAC的面積最大.
(3)如圖(3)所示,以BC為邊在兩側(cè)作正方形BCQ
1Q
2、正方形BCQ
4Q
3,則點(diǎn)Q
1,Q
2,Q
3,Q
4為符合題意要求的點(diǎn).
過Q
1點(diǎn)作Q
1D⊥y軸于點(diǎn)D,易證△Q
1CD≌△CBO,
∴Q
1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q
1(2,3);
同理求得Q
2(3,1),Q
3(-1,-1),Q
4(-2,1).
∴存在點(diǎn)Q,使△BCQ是以BC為腰的等腰直角三角形.Q點(diǎn)坐標(biāo)為:Q
1(2,3),Q
2(3,1),Q
3(-1,-1),Q
4(-2,1).
(4)如圖(4)所示,設(shè)E(n,0),則BE=1-n,QE=-
n
2-
n+2.
假設(shè)以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似,則有兩種情況:
①若△AOC∽△BEQ,則有:
=,
即
=,化簡(jiǎn)得:n
2+n-2=0,
解得n
1=-2,n
2=1(與B重合,舍去),∴n=-2,QE=-
n
2-
n+2=2.
∴Q(-2,2);
②若△AOC∽△BQE,則有:
=,
即
=,化簡(jiǎn)得:4n
2-n-3=0,
解得n
1=-
,n
2=1(與B重合,舍去),∴n=-
,QE=-
n
2-
n+2=
.
∴Q(-
,
).
綜上所述,存在點(diǎn)Q,使以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似.
Q點(diǎn)坐標(biāo)為(-2,2)或(-
,
).
(5)假設(shè)存在點(diǎn)Q,使以A、C、M、Q為頂點(diǎn)的四邊形是平行四邊形.
①若CM平行于x軸,如圖(5)a所示,有符合要求的兩個(gè)點(diǎn)Q
1,Q
2,此時(shí)Q
1A=Q
2A=CM.
∵CM∥x軸,∴點(diǎn)M、點(diǎn)C(0,2)關(guān)于對(duì)稱軸x=-1對(duì)稱,
∴M(-2,2),∴CM=2.
由Q
1A=Q
2A=CM=2,得到Q
1(-5,0),Q
2(-1,0);
②若CM不平行于x軸,如圖(5)b所示.過點(diǎn)M作MG⊥x軸于G,
易證△MGQ≌△COA,得QG=OA=3,MG=OC=2,即y
M=-2.
設(shè)M(x,-2),則有-
x
2-
x+2=-2,解得x=-1±
.
又QG=3,∴x
Q=x
G+3=2±
,
∴Q
3(2+
,0),Q
4(2-
,0).
綜上所述,存在點(diǎn)Q,使以A、C、M、Q為頂點(diǎn)的四邊形是平行四邊形.Q點(diǎn)坐標(biāo)為:Q
1(-5,0),Q
2(-1,0),Q
3(2+
,0),Q
4(2-
,0).
注:解答中給出(3)(4)(5)問解題過程,只是為了同學(xué)們易于理解,原題并未要求.